Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; : e0054024, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162433

RESUMO

Systemic viral infection of insects typically begins with the primary infection of midgut epithelial cells (enterocytes) and subsequent transit of the progeny virus in an apical-to-basal orientation into the hemocoel. For insect-vectored viruses, an oppositely oriented process (basal-to-apical transit) occurs upon secondary infection of salivary glands and is necessary for virus transmission to non-insect hosts. To examine this inversely oriented virus transit in these polarized tissues, we assessed the intracellular trafficking of two model viral envelope proteins (baculovirus GP64 and vesicular stomatitis virus G) in the midgut and salivary gland cells of the model insect, Drosophila melanogaster. Using fly lines that inducibly express either GP64 or VSV G, we found that each protein, expressed alone, was trafficked basally in midgut enterocytes. In salivary gland cells, VSV G was trafficked apically in most but not all cells, whereas GP64 was consistently trafficked basally. We demonstrated that a YxxØ motif present in both proteins was critical for basal trafficking in midgut enterocytes but dispensable for trafficking in salivary gland cells. Using RNAi, we found that clathrin adaptor protein complexes AP-1 and AP-3, as well as seven Rab GTPases, were involved in polarized VSV G trafficking in midgut enterocytes. Our results indicate that these viral envelope proteins encode the requisite information and require no other viral factors for appropriately polarized trafficking. In addition, they exploit tissue-specific differences in protein trafficking pathways to facilitate virus egress in the appropriate orientation for establishing systemic infections and vectoring infection to other hosts. IMPORTANCE: Viruses that use insects as hosts must navigate specific routes through different insect tissues to complete their life cycles. The routes may differ substantially depending on the life cycle of the virus. Both insect pathogenic viruses and insect-vectored viruses must navigate through the polarized cells of the midgut epithelium to establish a systemic infection. In addition, insect-vectored viruses must also navigate through the polarized salivary gland epithelium for transmission. Thus, insect-vectored viruses appear to traffic in opposite directions in these two tissues. In this study, we asked whether two viral envelope proteins (VSV G and baculovirus GP64) alone encode the signals necessary for the polarized trafficking associated with their respective life cycles. Using Drosophila as a model to examine tissue-specific polarized trafficking of these viral envelope proteins, we identified one of the virus-encoded signals and several host proteins associated with regulating the polarized trafficking in the midgut epithelium.

2.
J Insect Sci ; 21(4)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314494

RESUMO

The use of Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae), an economical insect model, for the study of enteropathogenic Escherichia coli (Migula) (EPEC), a diarrheagenic human pathogen, has been demonstrated previously but remains poorly understood. The present study characterizes the Galleria-EPEC system extensively for future studies using this system. We found that EPEC causes disease in G. mellonella larvae when injected intrahemocoelically but not orally. Disease manifests as increased mortality, decreased survival time, delayed pupation, decreased pupal mass, increased pupal duration, and hemocytopenia. Disease symptoms are dose-dependent and can be used as metrics for measuring EPEC virulence in future studies. The type III secretion system was only partially responsible for EPEC virulence in G. mellonella while the majority of the virulence remains unknown in origin. EPEC elicits insect anti-bacterial immune responses including melanization, hemolymph coagulation, nodulation, and phagocytosis. The immune responses were unable to control EPEC replication in the early stage of infection (≤3 h post-injection). EPEC clearance from the hemocoel does not guarantee insect survival. Overall, this study provided insights into EPEC virulence and pathogenesis in G. mellonella and identified areas of future research using this system.


Assuntos
Modelos Animais de Doenças , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/imunologia , Interações Hospedeiro-Patógeno/imunologia , Mariposas/imunologia , Animais , Infecções por Escherichia coli/mortalidade , Feminino , Larva/imunologia , Masculino
3.
J Insect Sci ; 21(6)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34865034

RESUMO

Extracellular traps (ETs) released from vertebrate and invertebrate immune cells consist of chromatin and toxic granule contents that are capable of immobilizing and killing microbes. This recently described innate immune response is not well documented in insects. The present study found that ETs were released by hemocytes of Galleria mellonella (Linnaeus) (Lepidoptera: Pyralidae) in vivo and ex vivo after bacterial stimulation. ET release (ETosis), hemolymph coagulation, and melanization likely contributed to the immobilization and killing of the bacteria. The injection of G. mellonella hemocyte deoxyribonucleic acid (DNA) in the presence of bacteria increased bacterial clearance rate and prolonged insect survival. Taken together, these results indicate the presence of insect hemocyte extracellular traps (IHETs) that protect the insect against microbial infection in the hemocoel and represent the first documentation of ETs in insects in vivo.


Assuntos
Infecções Bacterianas , Armadilhas Extracelulares , Hemócitos , Mariposas , Animais , Infecções Bacterianas/imunologia , Infecções Bacterianas/veterinária , Armadilhas Extracelulares/imunologia , Hemócitos/imunologia , Hemócitos/microbiologia , Larva , Mariposas/imunologia , Mariposas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA