Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 22(6): 1536-1548, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38226779

RESUMO

Salvianolic acids (SA), such as rosmarinic acid (RA), danshensu (DSS), and their derivative salvianolic acid B (SAB), etc. widely existed in Lamiaceae and Boraginaceae families, are of interest due to medicinal properties in the pharmaceutical industries. Hundreds of studies in past decades described that 4-coumaroyl-CoA and 4-hydroxyphenyllactic acid (4-HPL) are common substrates to biosynthesize SA with participation of rosmarinic acid synthase (RAS) and cytochrome P450 98A (CYP98A) subfamily enzymes in different plants. However, in our recent study, several acyl donors and acceptors included DSS as well as their ester-forming products all were determined in SA-rich plants, which indicated that previous recognition to SA biosynthesis is insufficient. Here, we used Salvia miltiorrhiza, a representative important medicinal plant rich in SA, to elucidate the diversity of SA biosynthesis. Various acyl donors as well as acceptors are catalysed by SmRAS to form precursors of RA and two SmCYP98A family members, SmCYP98A14 and SmCYP98A75, are responsible for different positions' meta-hydroxylation of these precursors. SmCYP98A75 preferentially catalyses C-3' hydroxylation, and SmCYP98A14 preferentially catalyses C-3 hydroxylation in RA generation. In addition, relative to C-3' hydroxylation of the acyl acceptor moiety in RA biosynthesis, SmCYP98A75 has been verified as the first enzyme that participates in DSS formation. Furthermore, SmCYP98A enzymes knockout resulted in the decrease and overexpression leaded to dramatic increase of SA accumlation. Our study provides new insights into SA biosynthesis diversity in SA-abundant species and versatility of CYP98A enzymes catalytic preference in meta-hydroxylation reactions. Moreover, CYP98A enzymes are ideal metabolic engineering targets to elevate SA content.


Assuntos
Sistema Enzimático do Citocromo P-450 , Salvia miltiorrhiza , Hidroxilação , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/enzimologia , Polifenóis/metabolismo , Polifenóis/biossíntese , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Alcenos
2.
Anal Biochem ; 687: 115431, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38123111

RESUMO

[S U M M A R Y] Many miRNA-disease association prediction models incorporate Gaussian interaction profile kernel similarity (GIPS). However, the GIPS fails to consider the specificity of the miRNA-disease association matrix, where matrix elements with a value of 0 represent miRNA and disease relationships that have not been discovered yet. To address this issue and better account for the impact of known and unknown miRNA-disease associations on similarity, we propose a method called vector projection similarity-based method for miRNA-disease association prediction (VPSMDA). In VPSMDA, we introduce three projection rules and combined with logistic functions for the miRNA-disease association matrix and propose a vector projection similarity measure for miRNAs and diseases. By integrating the vector projection similarity matrix with the original one, we obtain the improved miRNA and disease similarity matrix. Additionally, we construct a weight matrix using different numbers of neighbors to reduce the noise in the similarity matrix. In performance evaluation, both LOOCV and 5-fold CV experiments demonstrate that VPSMDA outperforms seven other state-of-the-art methods in AUC. Furthermore, in a case study, VPSMDA successfully predicted 10, 9, and 10 out of the top 10 associations for three important human diseases, respectively, and these predictions were confirmed by recent biomedical resources.


Assuntos
MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Predisposição Genética para Doença , Algoritmos , Modelos Genéticos , Área Sob a Curva , Biologia Computacional/métodos
3.
Anal Biochem ; 689: 115492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458307

RESUMO

DNA 4 mC plays a crucial role in the genetic expression process of organisms. However, existing deep learning algorithms have shortcomings in the ability to represent DNA sequence features. In this paper, we propose a 4 mC site identification algorithm, DNABert-4mC, based on a fusion of the pruned pre-training DNABert-Pruning model and artificial feature encoding to identify 4 mC sites. The algorithm prunes and compresses the DNABert model, resulting in the pruned pre-training model DNABert-Pruning. This model reduces the number of parameters and removes redundancy from output features, yielding more precise feature representations while upholding accuracy.Simultaneously, the algorithm constructs an artificial feature encoding module to assist the DNABert-Pruning model in feature representation, effectively supplementing the information that is missing from the pre-trained features. The algorithm also introduces the AFF-4mC fusion strategy, which combines artificial feature encoding with the DNABert-Pruning model, to improve the feature representation capability of DNA sequences in multi-semantic spaces and better extract 4 mC sites and the distribution of nucleotide importance within the sequence. In experiments on six independent test sets, the DNABert-4mC algorithm achieved an average AUC value of 93.81%, outperforming seven other advanced algorithms with improvements of 2.05%, 5.02%, 11.32%, 5.90%, 12.02%, 2.42% and 2.34%, respectively.


Assuntos
Algoritmos , DNA , DNA/genética , Nucleotídeos
4.
J Chem Inf Model ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058598

RESUMO

Existing matrix factorization methods face challenges, including the cold start problem and global nonlinear data loss during similarity learning, particularly in predicting associations between long noncoding RNAs (LncRNAs) and diseases. To overcome these issues, we introduce HPTRMF, a matrix factorization approach incorporating high-order perturbation and flexible trifactor regularization. HPTRMF constructs a high-order correlation matrix utilizing the known association matrix, leveraging high-order perturbation to effectively address the cold start problem caused by data sparsity. Additionally, HPTRMF incorporates a flexible trifactor regularization term to capture similarity information on LncRNAs and diseases, enabling the effective handling of global nonlinear data loss by capturing such data in the similarity matrix. Experimental results demonstrate the superiority of HPTRMF over nine state-of-the-art algorithms in Leave-One-Out Cross-Validation (LOOCV) and Five-Fold Cross-Validation (5-Fold CV) on three data sets.HPTRMF and data sets are available in https://github.com/Llvvvv/HPTRMF.

5.
Interdiscip Sci ; 16(2): 345-360, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38436840

RESUMO

Computational approaches employed for predicting potential microbe-disease associations often rely on similarity information between microbes and diseases. Therefore, it is important to obtain reliable similarity information by integrating multiple types of similarity information. However, existing similarity fusion methods do not consider multi-order fusion of similarity networks. To address this problem, a novel method of linear neighborhood label propagation with multi-order similarity fusion learning (MOSFL-LNP) is proposed to predict potential microbe-disease associations. Multi-order fusion learning comprises two parts: low-order global learning and high-order feature learning. Low-order global learning is used to obtain common latent features from multiple similarity sources. High-order feature learning relies on the interactions between neighboring nodes to identify high-order similarities and learn deeper interactive network structures. Coefficients are assigned to different high-order feature learning modules to balance the similarities learned from different orders and enhance the robustness of the fusion network. Overall, by combining low-order global learning with high-order feature learning, multi-order fusion learning can capture both the shared and unique features of different similarity networks, leading to more accurate predictions of microbe-disease associations. In comparison to six other advanced methods, MOSFL-LNP exhibits superior prediction performance in the leave-one-out cross-validation and 5-fold validation frameworks. In the case study, the predicted 10 microbes associated with asthma and type 1 diabetes have an accuracy rate of up to 90% and 100%, respectively.


Assuntos
Algoritmos , Humanos , Biologia Computacional/métodos , Aprendizado de Máquina
6.
Comput Biol Med ; 178: 108671, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870721

RESUMO

Medical image segmentation is a compelling fundamental problem and an important auxiliary tool for clinical applications. Recently, the Transformer model has emerged as a valuable tool for addressing the limitations of convolutional neural networks by effectively capturing global relationships and numerous hybrid architectures combining convolutional neural networks (CNNs) and Transformer have been devised to enhance segmentation performance. However, they suffer from multilevel semantic feature gaps and fail to account for multilevel dependencies between space and channel. In this paper, we propose a hierarchical dependency Transformer for medical image segmentation, named HD-Former. First, we utilize a Compressed Bottleneck (CB) module to enrich shallow features and localize the target region. We then introduce the Dual Cross Attention Transformer (DCAT) module to fuse multilevel features and bridge the feature gap. In addition, we design the broad exploration network (BEN) that cascades convolution and self-attention from different percepts to capture hierarchical dense contextual semantic features locally and globally. Finally, we exploit uncertain multitask edge loss to adaptively map predictions to a consistent feature space, which can optimize segmentation edges. The extensive experiments conducted on medical image segmentation from ISIC, LiTS, Kvasir-SEG, and CVC-ClinicDB datasets demonstrate that our HD-Former surpasses the state-of-the-art methods in terms of both subjective visual performance and objective evaluation. Code: https://github.com/barcelonacontrol/HD-Former.


Assuntos
Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
7.
Int J Med Inform ; 187: 105468, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703744

RESUMO

PURPOSE: Our research aims to compare the predictive performance of decision tree algorithms (DT) and logistic regression analysis (LR) in constructing models, and develop a Post-Thrombotic Syndrome (PTS) risk stratification tool. METHODS: We retrospectively collected and analyzed relevant case information of 618 patients diagnosed with DVT from January 2012 to December 2021 in three different tertiary hospitals in Jiangxi Province as the modeling group. Additionally, we used the case information of 212 patients diagnosed with DVT from January 2022 to January 2023 in two tertiary hospitals in Hubei Province and Guangdong Province as the validation group. We extracted electronic medical record information including general patient data, medical history, laboratory test indicators, and treatment data for analysis. We established DT and LR models and compared their predictive performance using receiver operating characteristic (ROC) curves and confusion matrices. Internal and external validations were conducted. Additionally, we utilized LR to generate nomogram charts, calibration curves, and decision curves analysis (DCA) to assess its predictive accuracy. RESULTS: Both DT and LR models indicate that Year, Residence, Cancer, Varicose Vein Operation History, DM, and Chronic VTE are risk factors for PTS occurrence. In internal validation, DT outperforms LR (0.962 vs 0.925, z = 3.379, P < 0.001). However, in external validation, there is no significant difference in the area under the ROC curve between the two models (0.963 vs 0.949, z = 0.412, P = 0.680). The validation results of calibration curves and DCA demonstrate that LR exhibits good predictive accuracy and clinical effectiveness. A web-based calculator software of nomogram (https://sunxiaoxuan.shinyapps.io/dynnomapp/) was utilized to visualize the logistic regression model. CONCLUSIONS: The combination of decision tree and logistic regression models, along with the web-based calculator software of nomogram, can assist healthcare professionals in accurately assessing the risk of PTS occurrence in individual patients with lower limb DVT.


Assuntos
Síndrome Pós-Trombótica , Trombose Venosa , Humanos , Trombose Venosa/diagnóstico , Síndrome Pós-Trombótica/diagnóstico , Síndrome Pós-Trombótica/etiologia , Feminino , Masculino , Pessoa de Meia-Idade , Medição de Risco/métodos , Estudos Retrospectivos , Extremidade Inferior/irrigação sanguínea , Fatores de Risco , Modelos Logísticos , Adulto , Árvores de Decisões , Idoso , Curva ROC , Algoritmos , Nomogramas
8.
Mol Cancer Res ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787319

RESUMO

HBV-associated hepatocellular carcinoma (HCC) represents the prevalent form of HCC, with HBx protein being a crucial oncoprotein. Numerous members of the protein tyrosine phosphatase non-receptor (PTPN) family have been confirmed to be significantly associated with the occurrence and progression of malignant tumors. Our group has previously identified the involvement of PTPN13 in HCC. However, the roles of other PTPNs in HCC still requires further investigation. In this study, we found PTPN18 expression was significantly downregulated within HCC tissues compared to that in adjacent non-tumor tissues and normal liver tissues. Functionally, PTPN18 exerted inhibitory effects on the proliferation, migration, invasion, and sphere-forming capability of HCC cells, while concurrently promoting apoptotic processes. Through phospho-protein microarray screening followed by subsequent validation experiments, we identified that PTPN18 could activate the p53 signaling pathway and suppress the AKT/FOXO1 signaling cascade in HCC cells. Moreover, we found that the HBx protein mediated the repression of PTPN18 expression by upregulating miR-128-3p. Collectively, our study unveiled the role of PTPN18 as a tumor suppressor in HBV-related HCC. Implications: Our findings revealed PTPN18 might serve as a potential diagnostic and therapeutic target for HBV-related HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA