Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 182(5): 1093-1108.e18, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32810437

RESUMO

In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.


Assuntos
Proteínas de Arabidopsis/imunologia , Proteínas de Arabidopsis/metabolismo , Sobrevivência Celular/imunologia , Imunidade Vegetal/imunologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/imunologia , Ácido Salicílico/imunologia , Ácido Salicílico/metabolismo , Ubiquitinação/imunologia
2.
Nature ; 621(7978): 423-430, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37674078

RESUMO

Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.


Assuntos
Códon de Iniciação , Conformação de Ácido Nucleico , RNA de Cadeia Dupla , RNA Mensageiro , Humanos , Arabidopsis/genética , Arabidopsis/imunologia , Códon de Iniciação/genética , Reconhecimento da Imunidade Inata , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/imunologia , Ribossomos/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/genética , Transcriptoma , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Aprendizado Profundo
3.
Proc Natl Acad Sci U S A ; 121(33): e2411100121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39116132

RESUMO

Plants employ distinct mechanisms to respond to environmental changes. Modification of mRNA by N 6-methyladenosine (m6A), known to affect the fate of mRNA, may be one such mechanism to reprogram mRNA processing and translatability upon stress. However, it is difficult to distinguish a direct role from a pleiotropic effect for this modification due to its prevalence in RNA. Through characterization of the transient knockdown-mutants of m6A writer components and mutants of specific m6A readers, we demonstrate the essential role that m6A plays in basal resistance and pattern-triggered immunity (PTI). A global m6A profiling of mock and PTI-induced Arabidopsis plants as well as formaldehyde fixation and cross-linking immunoprecipitation-sequencing of the m6A reader, EVOLUTIONARILY CONSERVED C-TERMINAL REGION2 (ECT2) showed that while dynamic changes in m6A modification and binding by ECT2 were detected upon PTI induction, most of the m6A sites and their association with ECT2 remained static. Interestingly, RNA degradation assay identified a dual role of m6A in stabilizing the overall transcriptome while facilitating rapid turnover of immune-induced mRNAs during PTI. Moreover, polysome profiling showed that m6A enhances immune-associated translation by binding to the ECT2/3/4 readers. We propose that m6A plays a positive role in plant immunity by destabilizing defense mRNAs while enhancing their translation efficiency to create a transient surge in the production of defense proteins.


Assuntos
Adenosina , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Biossíntese de Proteínas , Estabilidade de RNA , RNA Mensageiro , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunidade Vegetal/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reconhecimento da Imunidade Inata
4.
Environ Res ; 249: 118344, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38311200

RESUMO

More and more previously designed wastewater treatment plants (WWTPs) are upgraded to tertiary treatment to meet the higher effluent discharge standards of conventional pollutants. Contaminants of emerging concern (CECs) can cause adverse effects on organisms and usually flow into WWTPs along with urban sewage. How the retrofitted WWTPs targeting conventional pollutants will influence the treatment efficiency of CECs is seldom discussed. This study investigates the removal of CECs in two full-scale newly retrofitted WWTPs (CD and JM WWTPs), containing high-efficiency sedimentation tank and denitrification deep bed filter for enhancing total nitrogen removal. The overall CEC removal efficiencies in the CD and JM WWTPs were 73.79 % and 93.63 %, respectively. Mass balance results indicated that CD WWTP and JM WWTP release a total of 36.89 and 88.58 g/d of CECs into the environment through effluent and excess sludge, respectively. Analysis of the concentration of CECs along the treatment process revealed most CECs were removed in the biological treatment units. The incorporation of newly constructed tertiary treatment proved beneficial for CEC removal and removed 2.93 % and 2.36 % CECs, corresponding to CEC removal of 2.92 and 27.49 g/d in the CD and JM WWTPs, respectively. The data of this study were further used to evaluate the suitability of the SimpleTreat model for simulating the fate of CECs in WWTPs. The predicted fraction of CECs discharged through the biological treatment effluent were generally within ten-fold difference from the measured results, highlighting its potential for estimating CEC removal in WWTPs.


Assuntos
Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Nitrogênio/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Águas Residuárias/análise
5.
PLoS Pathog ; 16(4): e1008475, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339200

RESUMO

The nucleotide-binding, leucine-rich repeat-containing (NLR) class of immune receptors of plants and animals recognize pathogen-encoded proteins and trigger host defenses. Although animal NLRs form oligomers upon pathogen recognition to activate downstream signaling, the mechanisms of plant NLR activation remain largely elusive. Tm-22 is a plasma membrane (PM)-localized coiled coil (CC)-type NLR and confers resistance to Tobacco mosaic virus (TMV) by recognizing its viral movement protein (MP). In this study, we found that Tm-22 self-associates upon recognition of MP. The CC domain of Tm-22 is the signaling domain and its function requires PM localization and self-association. The nucleotide-binding (NB-ARC) domain is important for Tm-22 self-interaction and regulates activation of the CC domain through its nucleotide-binding and self-association. (d)ATP binding may alter the NB-ARC conformation to release its suppression of Tm-22 CC domain-mediated cell death. Our findings provide the first example of signaling domain for PM-localized NLR and insight into PM-localized NLR activation.


Assuntos
Proteínas NLR/metabolismo , Nicotiana/metabolismo , Nicotiana/virologia , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Membrana Celular/metabolismo , Resistência à Doença , Proteínas NLR/imunologia , Doenças das Plantas/virologia , Imunidade Vegetal , Proteínas de Plantas/imunologia , Ligação Proteica , Domínios Proteicos , Receptores Imunológicos/imunologia , Transdução de Sinais , Nicotiana/imunologia , Vírus do Mosaico do Tabaco/metabolismo , Vírus do Mosaico do Tabaco/patogenicidade
6.
PLoS Pathog ; 14(8): e1007282, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30157283

RESUMO

Gene silencing is a natural antiviral defense mechanism in plants. For effective infection, plant viruses encode viral silencing suppressors to counter this plant antiviral response. The geminivirus-encoded C4 protein has been identified as a gene silencing suppressor, but the underlying mechanism of action has not been characterized. Here, we report that Cotton Leaf Curl Multan virus (CLCuMuV) C4 protein interacts with S-adenosyl methionine synthetase (SAMS), a core enzyme in the methyl cycle, and inhibits SAMS enzymatic activity. By contrast, an R13A mutation in C4 abolished its capacity to interact with SAMS and to suppress SAMS enzymatic activity. Overexpression of wild-type C4, but not mutant C4R13A, suppresses both transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). Plants infected with CLCuMuV carrying C4R13A show decreased levels of symptoms and viral DNA accumulation associated with enhanced viral DNA methylation. Furthermore, silencing of NbSAMS2 reduces both TGS and PTGS, but enhanced plant susceptibility to two geminiviruses CLCuMuV and Tomato yellow leaf curl China virus. These data suggest that CLCuMuV C4 suppresses both TGS and PTGS by inhibiting SAMS activity to enhance CLCuMuV infection in plants.


Assuntos
Begomovirus/patogenicidade , Inativação Gênica , Metionina Adenosiltransferase/metabolismo , Interferência de RNA , Proteínas Virais/metabolismo , Begomovirus/metabolismo , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Metionina Adenosiltransferase/genética , Plantas Geneticamente Modificadas , Ligação Proteica , Nicotiana/genética , Nicotiana/metabolismo , Transcrição Gênica , Proteínas Virais/fisiologia
7.
Plant Physiol ; 173(4): 2399-2410, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28258211

RESUMO

The tomato Tobacco mosaic virus resistance-22 (Tm-22 ) gene encodes a coiled-coil-nucleotide binding site-Leu-rich repeat protein lacking a conventional plasma membrane (PM) localization motif. Tm-22 confers plant extreme resistance against tobamoviruses including Tobacco mosaic virus (TMV) by recognizing the avirulence (Avr) viral movement protein (MP). However, the subcellular compartment where Tm-22 functions is unclear. Here, we demonstrate that Tm-22 interacts with TMV MP to form a protein complex at the PM We show that both inactive and active Tm-22 proteins are localized to the PM When restricted to PM by fusing Tm-22 to the S-acylated PM association motif, the Tm-22 fusion protein can still induce a hypersensitive response cell death, consistent with its activation at the PM Through analyses of viral MP mutants, we find that the plasmodesmata (PD) localization of the Avr protein MP is not required for Tm-22 function. These results suggest that Tm-22-mediated resistance takes place on PM without requirement of its Avr protein to be located to PD.


Assuntos
Membrana Celular/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Plasmodesmos/metabolismo , Membrana Celular/virologia , Resistência à Doença/genética , Immunoblotting , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia , Microscopia Confocal , Mutação , Doenças das Plantas/genética , Doenças das Plantas/virologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/virologia , Proteínas de Plantas/genética , Proteínas do Movimento Viral em Plantas/genética , Plantas Geneticamente Modificadas , Plasmodesmos/virologia , Ligação Proteica , Nicotiana/genética , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Vírus do Mosaico do Tabaco/fisiologia
8.
Plant Physiol ; 171(3): 1801-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27225900

RESUMO

Virus-induced gene silencing (VIGS) is a powerful technique to study gene function in plants. However, very few VIGS vectors are available for monocot plants. Here we report that Foxtail mosaic virus (FoMV) can be engineered as an effective VIGS system to induce efficient silencing of endogenous genes in monocot plants including barley (Hordeum vulgare L.), wheat (Triticum aestivum) and foxtail millet (Setaria italica). This is evidenced by FoMV-based silencing of phytoene desaturase (PDS) and magnesium chelatase in barley, of PDS and Cloroplastos alterados1 in foxtail millet and wheat, and of an additional gene IspH in foxtail millet. Silencing of these genes resulted in photobleached or chlorosis phenotypes in barley, wheat, and foxtail millet. Furthermore, our FoMV-based gene silencing is the first VIGS system reported for foxtail millet, an important C4 model plant. It may provide an efficient toolbox for high-throughput functional genomics in economically important monocot crops.


Assuntos
Inativação Gênica , Hordeum/genética , Potexvirus/genética , Setaria (Planta)/genética , Triticum/genética , Vetores Genéticos , Oxirredutases/genética , Proteínas de Plantas/genética
9.
Opt Lett ; 42(20): 4040-4043, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29028007

RESUMO

We present a focus-adjustable endoscopic probe for optical coherence tomography (OCT), which is able to acquire images with different focal planes and overcome depth-of-focus limitations by image fusing. The use of a two-way shape-memory-alloy spring enables the probe to adjust working distance over 1.5 mm, providing a large scanning range with high resolution and no sensitivity loss. Equipped with a homemade hollow-core ultrasonic motor, the probe is capable of performing an unobstructed 360 deg field-of-view distal scanning. Both the axial resolution and the best lateral resolution are ∼4 µm, with a sensitivity of 100.3 dB. Spectral-domain OCT imaging of phantom and biological tissues with the probe is also demonstrated.


Assuntos
Endoscopia , Tomografia de Coerência Óptica/métodos , Aumento da Imagem/métodos , Imagens de Fantasmas
10.
PLoS Pathog ; 9(10): e1003659, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098120

RESUMO

Tm-2² is a coiled coil-nucleotide binding-leucine rich repeat resistance protein that confers durable extreme resistance against Tomato mosaic virus (ToMV) and Tobacco mosaic virus (TMV) by recognizing the viral movement protein (MP). Here we report that the Nicotiana benthamiana J-domain MIP1 proteins (NbMIP1s) associate with tobamovirus MP, Tm-2² and SGT1. Silencing of NbMIP1s reduced TMV movement and compromised Tm-2²-mediated resistance against TMV and ToMV. Furthermore, silencing of NbMIP1s reduced the steady-state protein levels of ToMV MP and Tm-2². Moreover, NbMIP1s are required for plant resistance induced by other R genes and the nonhost pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. In addition, we found that SGT1 associates with Tm-2² and is required for Tm-2²-mediated resistance against TMV. These results suggest that NbMIP1s function as co-chaperones during virus infection and plant immunity.


Assuntos
Resistência à Doença/imunologia , Chaperonas Moleculares/imunologia , Nicotiana/imunologia , Doenças das Plantas/imunologia , Proteínas de Plantas/imunologia , Vírus do Mosaico do Tabaco/imunologia , Resistência à Doença/genética , Glucosiltransferases/genética , Glucosiltransferases/imunologia , Chaperonas Moleculares/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Estrutura Terciária de Proteína , Pseudomonas syringae , Nicotiana/genética , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética
11.
Sensors (Basel) ; 15(9): 23618-39, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26393589

RESUMO

This paper presents relative orientation and position detection methods for jumping sensor nodes (JSNs) recycling. The methods are based on motion captures of the JSNs by an RGB-D sensor mounted on a carrier robot and the dynamic cooperation between the carrier and the JSNs. A disc-like label with two different colored sides is mounted on the top of the JSNs. The RGB-D sensor can detect the motion of the label to calculate the orientations and positions of the JSNs and the carrier relative to each other. After the orientations and positions have been detected, the JSNs jump into a cabin mounted on the carrier in dynamic cooperation with the carrier for recycling. The performances of the proposed methods are tested with a prototype system. The results show that the carrier can detect a JSN from up to 2 m away and sense its relative orientation and position successfully. The errors of the JSN's orientation and position detections relative to the carrier could be reduced to the values smaller than 1° and 1 cm, respectively, by using the dynamic cooperation strategies. The proposed methods in this paper could also be used for other kinds of mobile sensor nodes and multi-robot systems.

12.
Opt Lett ; 39(2): 247-50, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562118

RESUMO

We report a novel linear-in-wavenumber (k-linear) swept laser source based on an acousto-optic deflector (AOD). The AOD-based optical filter includes an acousto-optic deflector and a reflection grating. The laser may tune k linearly in wavenumber over time due to its appropriate configuration and is favorable for fast imaging because it avoids data resampling and recalibration, as are required in conventional swept source optical coherence tomography (SS-OCT). We achieved k-linearity with Pearson's r correlation coefficients of 0.99995 without and 0.99997 with optimization. The laser has a tuning range of 50 nm, a 3 dB swept range of 42 nm (FWHM), output power of 2.56 mW, 6 dB sensitivity roll-off depth of 0.941 mm, and central wavelength of 1064 nm at a scanning rate of ∼20 kHz. Scanning rate as high as ∼400 kHz is also achieved for this laser with the tuning range 49 nm, swept linearity of 0.99990, output power of 2.30 mW, and a 6 dB sensitivity roll-off depth 0.550 mm. SS-OCT imaging with linear-in-wavenumber swept laser is also demonstrated.

13.
Science ; 385(6714): 1211-1217, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39265009

RESUMO

In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For many years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been debated. We found that in Arabidopsis thaliana, after a local infection, the conserved cysteine residue of the transcription factor CCA1 HIKING EXPEDITION (CHE) undergoes sulfenylation in systemic tissues, which enhances its binding to the promoter of the SA-synthesis gene ISOCHORISMATE SYNTHASE1 (ICS1) and increases SA production. Furthermore, hydrogen peroxide (H2O2) produced through NADPH oxidases is the mobile signal that sulfenylates CHE in a concentration-dependent manner. Accumulation of SA and the previously reported signal molecules, such as N-hydroxypipecolic acid (NHP), then form a signal amplification loop to establish SAR.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Peróxido de Hidrogênio , Doenças das Plantas , Ácido Salicílico , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/microbiologia , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Peróxido de Hidrogênio/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Doenças das Plantas/microbiologia , Resistência à Doença/genética , Regiões Promotoras Genéticas , Transferases Intramoleculares/metabolismo , Transferases Intramoleculares/genética , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Regulação da Expressão Gênica de Plantas , Cisteína/metabolismo , Transdução de Sinais , Pseudomonas syringae
14.
Carbohydr Polym ; 344: 122532, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39218554

RESUMO

Porous materials are usually used as sound-absorbing materials to alleviate noise pollution problems. However, the heat energy conversed from the acoustic energy is wasteful. Herein, anisotropic cellulose-based phase change aerogels (MXene/CNF-C/PEG aerogels) are fabricated by facile directional freeze casting method with anisotropic porous structure, efficient sound wave absorption, acoustic-thermal conversion and thermal management capability. MXene/CNF-C/PEG aerogels with shape stability are formed by hydrogen bonding forces between carboxylated cellulose nanofibers (CNF-C) and PEG without chemical crosslinking. The addition of MXene not only increases thermal conductive performance to 150 % but also enhances acoustic-thermal conversion ability effectively. Moreover, the directional porous MXene/CNF-C/PEG aerogels (DMCPs) possess high energy storage density (143.0 J/g) and acoustic-thermal conversion performance, which open up broad application prospect in the field of acoustic to heat energy conversion and storage.

15.
Technol Health Care ; 32(2): 849-859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37545275

RESUMO

BACKGROUND: There are 1.8 million lung cancer deaths worldwide, accounting for 18% of global cancer deaths, including 710,000 in China, accounting for 23.8% of all cancer deaths in China. OBJECTIVE: To explore the out-of-set association rules of lung cancer symptoms and drugs through text mining of traditional Chinese medicine (TCM) treatment of lung cancer, and form medical case analysis to analyze the experience of TCM syndrome differentiation in its treatment. METHODS: The medical records of all patients diagnosed with lung cancer in Nanjing Chest Hospital from January to December 2018 were collected, and the out-of-set association analysis was performed using the MedCase v5.2 TCM clinical scientific research auxiliary platform based on the frequent pattern growth enhanced association analysis algorithm. RESULTS: In terms of TCM treatment of lung cancer, the clinical symptoms with high correlation included cough, expectoration, chest distress, and white phlegm; and the drugs with high correlation included Pinellia ternata, licorice root, white Atractylodes rhizome, and Radix Ophiopogonis; with the prescriptions based on Erchen and Maimendong decoctions. CONCLUSION: This analytical study of the medical cases of TCM treatment for lung cancer was performed using data mining techniques, and the out-of-set association rules between clinical symptoms and drugs were analyzed, including the understanding of lung cancer in TCM. Moreover, the essence of experience in drug use was gathered, providing significant scientific guidance for the clinical treatment of lung cancer.


Assuntos
Antineoplásicos , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Medicamentos de Ervas Chinesas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Medicina Tradicional Chinesa , Mineração de Dados , Antineoplásicos/uso terapêutico , Pulmão
16.
Transl Oncol ; 46: 102009, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38833783

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide. Connexin is a transmembrane protein involved in gap junctions (GJs) formation. Our previous study found that connexin 37 (Cx37), encoded by gap junction protein alpha 4 (GJA4), expressed on fibroblasts acts as a promoter of CRC and is closely related to epithelial-mesenchymal transition (EMT) and tumor immune microenvironment. However, to date, the mechanism concerning the malignancy of GJA4 in tumor stroma has not been studied. METHODS: Hematoxylin-eosin (HE) and immunohistochemical (IHC) staining were used to validate the expression and localization of GJA4. Using single-cell analysis, enrichment analysis, spatial transcriptomics, immunofluorescence staining (IF), Sirius red staining, wound healing and transwell assays, western blotting (WB), Cell Counting Kit-8 (CCK8) assay and in vivo experiments, we investigated the possible mechanisms of GJA4 in promoting CRC. RESULTS: We discovered that in CRC, GJA4 on fibroblasts is involved in promoting fibroblast activation and promoting EMT through a fibroblast-dependent pathway. Furthermore, GJA4 may act synergistically with M2 macrophages to limit T cell infiltration by stimulating the formation of an immune-excluded desmoplasic barrier. Finally, we found a significantly correlation between GJA4 and pathological staging (P < 0.0001) or D2 dimer (R = 0.03, P < 0.05). CONCLUSION: We have identified GJA4 expressed on fibroblasts is actually a promoter of the tumor mesenchymal phenotype. Our findings suggest that the interaction between GJA4+ fibroblasts and M2 macrophages may be an effective target for enhancing tumor immunotherapy.

17.
ACS Appl Mater Interfaces ; 16(13): 16678-16686, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38503721

RESUMO

Photodetectors with a broad-band response range are widely used in many fields and are regarded as pivotal components of the modern miniaturized electronics industry. However, commercial broad-band photodetectors composed of traditional bulk semiconductor materials are still limited by complex preparation techniques, high costs, and a lack of mechanical strength and flexibility, which are difficult to satisfy the increasing demand for flexible and wearable optoelectronics. Therefore, researchers have been devoted to finding new strategies to obtain flexible, stable, and high-performance broad-band photodetectors. In this work, a novel self-assembled BiGaSeAs composite superlattice-structured nanowire was developed with a simple chemical vapor deposition method for easy fabrication. After the device assembling, the photodetector showed outstanding performance in terms of obvious Ion/Ioff (13.9), broad-band photoresponse (365-940 nm), excellent responsivity (1007.67 A/W), high detectivity (9.38 × 109 Jones), and rapid response (21 and 23 ms). The formation of microheterojunctions among various materials inside the nanowires also contributed to their extended broad-spectrum response and outstanding detection ability. These results indicate that the BiGaSeAs nanowires have potential applications in the field of flexible and wearable electronics.

18.
bioRxiv ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546937

RESUMO

In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For 30 years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been hotly debated. We found that, upon pathogen challenge, the cysteine residue of transcription factor CHE undergoes sulfenylation in systemic tissues, enhancing its binding to the promoter of SA-synthesis gene, ICS1, and increasing SA production. This occurs independently of previously reported pipecolic acid (Pip) signal. Instead, H2O2 produced by NADPH oxidase, RBOHD, is the mobile signal that sulfenylates CHE in a concentration-dependent manner. This modification serves as a molecular switch that activates CHE-mediated SA-increase and subsequent Pip-accumulation in systemic tissues to synergistically induce SAR.

19.
Cell Host Microbe ; 31(3): 334-342.e5, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36801014

RESUMO

The recognition of pathogen effectors by their cognate nucleotide-binding leucine-rich repeat (NLR) receptors activates effector-triggered immunity (ETI) in plants. ETI is associated with correlated transcriptional and translational reprogramming and subsequent death of infected cells. Whether ETI-associated translation is actively regulated or passively driven by transcriptional dynamics remains unknown. In a genetic screen using a translational reporter, we identified CDC123, an ATP-grasp protein, as a key activator of ETI-associated translation and defense. During ETI, an increase in ATP concentration facilitates CDC123-mediated assembly of the eukaryotic translation initiation factor 2 (eIF2) complex. Because ATP is required for the activation of NLRs as well as the CDC123 function, we uncovered a possible mechanism by which the defense translatome is coordinately induced during NLR-mediated immunity. The conservation of the CDC123-mediated eIF2 assembly suggests its possible role in NLR-mediated immunity beyond plants.


Assuntos
Fator de Iniciação 2 em Eucariotos , Proteínas , Fator de Iniciação 2 em Eucariotos/metabolismo , Plantas/metabolismo , Domínios Proteicos , Trifosfato de Adenosina/metabolismo , Imunidade Vegetal , Doenças das Plantas , Proteínas NLR/metabolismo
20.
Technol Health Care ; 31(5): 1759-1770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970924

RESUMO

BACKGROUND: In recent years, malignant tumors have gradually become one of the main causes of death for Chinese residents, of which lung cancer ranks first in both the incidence and mortality in China. OBJECTIVE: To mine the text of traditional Chinese medicine (TCM) clinical medical cases after data cleaning, analyze it, and study the experience of TCM doctors in treating non-small cell lung cancer (NSCLC). METHODS: The applied approach was based on the data mining methods of decentralized and hierarchical system clustering of data from a drug and prescription database. This study involved 215 patients, 287 cases, and 147 types of clinical drugs. RESULTS: The data analysis of the clinical treatment of NSCLC in TCM showed that Erchen Decoction was the main method for the treatment of non-small cell lung cancer in clinical treatment of non-small cell lung cancer. Junjian recipes were close to each other, with Banzhilian, Lobelia, Shanci Mushroom, Hedyotis diffusa to anticancer and detoxify. CONCLUSION: This study analyzed the core TCM prescription for NSCLC by collecting the empirical essence and characteristics of specific medications. It has some guiding scientific significance for the clinical treatment of lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Medicina Tradicional Chinesa/métodos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Prescrições
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA