RESUMO
Bifunctional stop codons that have both translation and termination functions in the same species are important for understanding the evolution and function of genetic codes in living organisms. Considering the high frequency of bifunctional codons but limited number of available genomes in ciliates, we de novo sequenced seven representative ciliate genomes to explore the evolutionary history of stop codons. We further propose a stop codon reassignment quantification method (stopCR) that can identify bifunctional codons and measure their frequencies in various eukaryotic organisms. Using our newly developed method, we found two previously undescribed genetic codes, illustrating the prevalence of bifunctional stop codons in ciliates. Overall, evolutionary genomic analyses suggest that gain or loss of reassigned stop codons in ciliates is shaped by their living environment, the eukaryotic release factor 1, and suppressor tRNAs. This study provides novel clues about the functional diversity and evolutionary history of stop codons in eukaryotic organisms.
Assuntos
Cilióforos , Fatores de Terminação de Peptídeos , Códon de Terminação , Fatores de Terminação de Peptídeos/genética , Cilióforos/genética , Código Genético , Sequência de BasesRESUMO
Histidine phosphorylation (pHis), occurring on the histidine of substrate proteins, is a hidden phosphoproteome that is poorly characterized in mammals. LHPP (phospholysine phosphohistidine inorganic pyrophosphate phosphatase) is one of the histidine phosphatases and its encoding gene was recently identified as a susceptibility gene for major depressive disorder (MDD). However, little is known about how LHPP or pHis contributes to depression. Here, by using integrative approaches of genetics, behavior and electrophysiology, we observed that LHPP in the medial prefrontal cortex (mPFC) was essential in preventing stress-induced depression-like behaviors. While genetic deletion of LHPP per se failed to affect the mice's depression-like behaviors, it markedly augmented the behaviors upon chronic social defeat stress (CSDS). This augmentation could be recapitulated by the local deletion of LHPP in mPFC. By contrast, overexpressing LHPP in mPFC increased the mice's resilience against CSDS, suggesting a critical role of mPFC LHPP in stress-induced depression. We further found that LHPP deficiency increased the levels of histidine kinases (NME1/2) and global pHis in the cortex, and decreased glutamatergic transmission in mPFC upon CSDS. NME1/2 served as substrates of LHPP, with the Aspartic acid 17 (D17), Threonine 54 (T54), or D214 residue within LHPP being critical for its phosphatase activity. Finally, reintroducing LHPP, but not LHPP phosphatase-dead mutants, into the mPFC of LHPP-deficient mice reversed their behavioral and synaptic deficits upon CSDS. Together, these results demonstrate a critical role of LHPP in regulating stress-related depression and provide novel insight into the pathogenesis of MDD.
Assuntos
Transtorno Depressivo Maior , Animais , Camundongos , Transtorno Depressivo Maior/metabolismo , Depressão , Histidina/metabolismo , Proteínas/metabolismo , Fatores de Risco , Estresse Psicológico/metabolismo , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/metabolismo , Mamíferos/metabolismoRESUMO
Dopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.
Assuntos
Depressão , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transdução de Sinais , Fosforilação , Receptor ErbB-4/genética , Receptor ErbB-4/metabolismoRESUMO
Epilepsy, a common neurological disorder, is featured with recurrent seizures. Its underlying pathological mechanisms remain elusive. Here, we provide evidence for loss of neogenin (NEO1), a coreceptor for multiple ligands, including netrins and bone morphological proteins, in the development of epilepsy. NEO1 is reduced in hippocampi from patients with epilepsy based on transcriptome and proteomic analyses. Neo1 knocking out (KO) in mouse brains displays elevated epileptiform spikes and seizure susceptibility. These phenotypes were undetectable in mice, with selectively depleted NEO1 in excitatory (NeuroD6-Cre+) or inhibitory (parvalbumin+) neurons, but present in mice with specific hippocampal astrocytic Neo1 KO. Additionally, neurons in hippocampal dentate gyrus, a vulnerable region in epilepsy, in mice with astrocyte-specific Neo1 KO show reductions in inhibitory synaptic vesicles and the frequency of miniature inhibitory postsynaptic current(mIPSC), but increase of the duration of miniature excitatory postsynaptic current and tonic NMDA receptor currents, suggesting impairments in both GABAergic transmission and extracellular glutamate clearance. Further proteomic and cell biological analyses of cell-surface proteins identified GLAST, a glutamate-aspartate transporter that is marked reduced in Neo1 KO astrocytes and the hippocampus. NEO1 interacts with GLAST and promotes GLAST surface distribution in astrocytes. Expressing NEO1 or GLAST in Neo1 KO astrocytes in the hippocampus abolishes the epileptic phenotype. Taken together, these results uncover an unrecognized pathway of NEO1-GLAST in hippocampal GFAP+ astrocytes, which is critical for GLAST surface distribution and function, and GABAergic transmission, unveiling NEO1 as a valuable therapeutic target to protect the brain from epilepsy.
Assuntos
Astrócitos/metabolismo , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Animais , Astrócitos/fisiologia , Transporte Biológico/fisiologia , Epilepsia/fisiopatologia , Epilepsia/prevenção & controle , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Convulsões/metabolismo , Transdução de Sinais , Potenciais Sinápticos/fisiologiaRESUMO
Extinguishing the previously acquired fear is critical for the adaptation of an organism to the ever-changing environment, a process requiring the engagement of GABAA receptors (GABAARs). GABAARs consist of tens of structurally, pharmacologically, and functionally heterogeneous subtypes. However, the specific roles of these subtypes in fear extinction remain largely unexplored. Here, we observed that in the medial prefrontal cortex (mPFC), a core region for mood regulation, the extrasynaptically situated, δ-subunit-containing GABAARs [GABAA(δ)Rs], had a permissive role in tuning fear extinction in male mice, an effect sharply contrasting to the established but suppressive role by the whole GABAAR family. First, the fear extinction in individual mice was positively correlated with the level of GABAA(δ)R expression and function in their mPFC. Second, knockdown of GABAA(δ)R in mPFC, specifically in its infralimbic (IL) subregion, sufficed to impair the fear extinction in mice. Third, GABAA(δ)R-deficient mice also showed fear extinction deficits, and re-expressing GABAA(δ)Rs in the IL of these mice rescued the impaired extinction. Further mechanistic studies demonstrated that the permissive effect of GABAA(δ)R was associated with its role in enabling the extinction-evoked plastic regulation of neuronal excitability in IL projection neurons. By contrast, GABAA(δ)R had little influence on the extinction-evoked plasticity of glutamatergic transmission in these cells. Altogether, our findings revealed an unconventional and permissive role of extrasynaptic GABAA receptors in fear extinction through a route relying on nonsynaptic plasticity.SIGNIFICANCE STATEMENT The medial prefrontal cortex (mPFC) is one of the kernel brain regions engaged in fear extinction. Previous studies have repetitively shown that the GABAA receptor (GABAAR) family in this region act to suppress fear extinction. However, the roles of specific GABAAR subtypes in mPFC are largely unknown. We observed that the GABAAR-containing δ-subunit [GABAA(δ)R], a subtype of GABAARs exclusively situated in the extrasynaptic membrane and mediating the tonic neuronal inhibition, works oppositely to the whole GABAAR family and promotes (but does not suppress) fear extinction. More interestingly, in striking contrast to the synaptic GABAARs that suppress fear extinction by breaking the extinction-evoked plasticity of glutamatergic transmission, the GABAA(δ)R promotes fear extinction through enabling the plastic regulation of neuronal excitability in the infralimbic subregion of mPFC. Our findings thus reveal an unconventional role of GABAA(δ)R in promoting fear extinction through a route relying on nonsynaptic plasticity.
Assuntos
Extinção Psicológica , Medo , Animais , Medo/fisiologia , Masculino , Camundongos , Neurônios/metabolismo , Plásticos/metabolismo , Plásticos/farmacologia , Córtex Pré-Frontal/fisiologia , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/farmacologiaRESUMO
BACKGROUND AND OBJECTIVES: Real-time blood flow variation is crucial for understanding the dynamic development of coronary atherosclerosis. The main objective of this study is to investigate the effect of varying extent of stenosis on the hemodynamic features in left anterior descending coronary artery. METHODS: Various Computational fluid dynamics (CFD) models were constructed with patient-specific CT image data, using actual fractional flow reserve (FFR) as boundary conditions to provide a real-time quantitative description of hemodynamic properties. The hemodynamic parameters, such as the local and instantaneous wall shear stress (WSS), oscillating shear index (OSI) and relative residence time (RRT), blood flow velocity and pressure drop during various phases of cardiac cycle were provided in detail. RESULTS: There was no evident variation in hemodynamic parameters in the cases of less than 50% stenosis while there were abrupt and dramatic changes in hemodynamics when the stenosis aggravated from 60 to 70%. Furthermore, when the stenosis was beyond 70%, there existed substantial pressure difference, WSS, and blood flow velocity in the center of the stenosis. Although OSI and RRT increased along with the aggravation of stenosis, they appeared with obvious abnormalities across all cases, even in mild stenosis. CONCLUSION: The simulation could present a dynamic and comprehensive profile of how hemodynamic parameters vary in accordance with divergent severities of stenosis, which could serve as an effective reference for the clinicians to have a deeper insight into the pathological mechanism of coronary atherosclerosis and stenosis.
Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Reserva Fracionada de Fluxo Miocárdico , Humanos , Vasos Coronários , Constrição Patológica , Modelos Cardiovasculares , Hemodinâmica , Velocidade do Fluxo Sanguíneo , Estresse MecânicoRESUMO
Wnt signaling plays a critical role in production and differentiation of neurons and undergoes a progressive reduction during cortical development. However, how Wnt signaling is regulated is not well understood. Here we provide evidence for an indispensable role of neddylation, a ubiquitylation-like protein modification, in inhibiting Wnt/ß-catenin signaling. We show that ß-catenin is neddylated; and inhibiting ß-catenin neddylation increases its nuclear accumulation and Wnt/ß-catenin signaling. To test this hypothesis in vivo, we mutated Nae1, an obligative subunit of the E1 for neddylation in cortical progenitors. The mutation leads to eventual reduction in radial glia progenitors (RGPs). Consequently, the production of intermediate progenitors (IPs) and neurons is reduced, and neuron migration is impaired, resulting in disorganization of the cerebral cortex. These phenotypes are similar to those of ß-catenin gain-of-function mice. Finally, suppressing ß-catenin expression is able to rescue deficits of Nae1 mutant mice. Together, these observations identified a mechanism to regulate Wnt/ß-catenin signaling in cortical development.
Assuntos
Proteína NEDD8/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Córtex Cerebral/metabolismo , Feminino , Masculino , Camundongos , Proteína NEDD8/genética , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismoRESUMO
Digital image-correlation (DIC) algorithms rely heavily on the accuracy of the initial values provided by whole-pixel search algorithms for structural displacement monitoring. When the measured displacement is too large or exceeds the search domain, the calculation time and memory consumption of the DIC algorithm will increase greatly, and even fail to obtain the correct result. The paper introduced two edge-detection algorithms, Canny and Zernike moments in digital image-processing (DIP) technology, to perform geometric fitting and sub-pixel positioning on the specific pattern target pasted on the measurement position, and to obtain the structural displacement according to the change of the target position before and after deformation. This paper compared the difference between edge detection and DIC in accuracy and calculation speed through numerical simulation, laboratory, and field tests. The study demonstrated that the structural displacement test based on edge detection is slightly inferior to the DIC algorithm in terms of accuracy and stability. As the search domain of the DIC algorithm becomes larger, its calculation speed decreases sharply, and is obviously slower than the Canny and Zernike moment algorithms.
RESUMO
BACKGROUND: Ciliated protists are a widely distributed, morphologically diverse, and genetically heterogeneous group of unicellular organisms, usually known for containing two types of nuclei: a transcribed polyploid macronucleus involved in gene expression and a silent diploid micronucleus responsible for transmission of genetic material during sexual reproduction and generation of the macronucleus. Although studies in a few species of culturable ciliated protists have revealed the highly dynamic nature of replicative and recombination events relating the micronucleus to the macronucleus, the broader understanding of the genomic diversity of ciliated protists, as well as their phylogenetic relationships and metabolic potential, has been hampered by the inability to culture numerous other species under laboratory conditions, as well as the presence of symbiotic bacteria and microalgae which provide a challenge for current sequencing technologies. Here, we optimized single-cell sequencing methods and associated data analyses, to effectively remove contamination by commensal bacteria, and generated high-quality genomes for a number of Euplotia species. RESULTS: We obtained eight high-quality Euplotia genomes by using single-cell genome sequencing techniques. The genomes have high genomic completeness, with sizes between 68 and 125 M and gene numbers between 14K and 25K. Through comparative genomic analysis, we found that there are a large number of gene expansion events in Euplotia genomes, and these expansions are closely related to the phenotypic evolution and specific environmental adaptations of individual species. We further found four distinct subgroups in the genus Euplotes, which exhibited considerable genetic distance and relative lack of conserved genomic syntenies. Comparative genomic analyses of Uronychia and its relatives revealed significant gene expansion associated with the ciliary movement machinery, which may be related to the unique and strong swimming ability. CONCLUSIONS: We employed single-cell genomics to obtain eight ciliate genomes, characterized the underestimated genomic diversity of Euplotia, and determined the divergence time of representative species in this subclass for the first time. We also further investigated the extensive duplication events associated with speciation and environmental adaptation. This study provides a unique and valuable resource for understanding the evolutionary history and genetic diversity of ciliates.
Assuntos
Cilióforos , Genômica , Mapeamento Cromossômico , Cilióforos/genética , Evolução Molecular , Genômica/métodos , Macronúcleo/genética , FilogeniaRESUMO
Amyloid-ß (Aß) deposition occurs years before cognitive symptoms appear and is considered a cause of Alzheimer's disease (AD). The imbalance of Aß production and clearance leads to Aß accumulation and Aß deposition. Increasing evidence indicates an important role of astrocytes, the most abundant cell type among glial cells in the brain, in Aß clearance. We explored the role of low-density lipoprotein receptor-related protein 4 (LRP4), a member of the LDLR family, in AD pathology. We show that Lrp4 is specifically expressed in astrocytes and its levels in astrocytes were higher than those of Ldlr and Lrp1, both of which have been implicated in Aß uptake. LRP4 was reduced in postmortem brain tissues of AD patients. Genetic deletion of the Lrp4 gene augmented Aß plaques in 5xFAD male mice, an AD mouse model, and exacerbated the deficits in neurotransmission, synchrony between the hippocampus and PFC, and cognition. Mechanistically, LRP4 promotes Aß uptake by astrocytes likely by interacting with ApoE. Together, our study demonstrates that astrocytic LRP4 plays an important role in Aß pathology and cognitive function.SIGNIFICANCE STATEMENT This study investigates how astrocytes, a type of non-nerve cells in the brain, may contribute to Alzheimer's disease (AD) development. We demonstrate that the low-density lipoprotein receptor-related protein 4 (LRP4) is reduced in the brain of AD patients. Mimicking the reduced levels in an AD mouse model exacerbates cognitive impairment and increases amyloid aggregates that are known to damage the brain. We show that LRP4 could promote the clearance of amyloid protein by astrocytes. Our results reveal a previously unappreciated role of LRP4 in AD development.
Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Encéfalo/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Humanos , Proteínas Relacionadas a Receptor de LDL/genética , Masculino , Camundongos , Placa Amiloide/metabolismo , Placa Amiloide/patologiaRESUMO
Neurotrophic factor NRG1 and its receptor ErbB4 play a role in GABAergic circuit assembly during development. ErbB4 null mice possess fewer interneurons, have decreased GABA release, and show impaired behavior in various paradigms. In addition, NRG1 and ErbB4 have also been implicated in regulating GABAergic transmission and plasticity in matured brains. However, current ErbB4 mutant strains are unable to determine whether phenotypes in adult mutant mice result from abnormal neural development. This important question, a glaring gap in understanding NRG1-ErbB4 function, was addressed by using two strains of mice with temporal control of ErbB4 deletion and expression, respectively. We found that ErbB4 deletion in adult mice impaired behavior and GABA release but had no effect on neuron numbers and morphology. On the other hand, some deficits due to the ErbB4 null mutation during development were alleviated by restoring ErbB4 expression at the adult stage. Together, our results indicate a critical role of NRG1-ErbB4 signaling in GABAergic transmission and behavior in adulthood and suggest that restoring NRG1-ErbB4 signaling at the postdevelopmental stage might benefit relevant brain disorders.
Assuntos
Comportamento Animal , Encéfalo/patologia , Interneurônios/patologia , Neuregulina-1/metabolismo , Receptor ErbB-4/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Animais , Encéfalo/metabolismo , Interneurônios/metabolismo , Camundongos , Camundongos Knockout , Neuregulina-1/genética , Transdução de Sinais , Ácido gama-Aminobutírico/metabolismoRESUMO
Neuregulin3 (NRG3) is a growth factor of the neuregulin (NRG) family and a risk gene of various severe mental illnesses including schizophrenia, bipolar disorders, and major depression. However, the physiological function of NRG3 remains poorly understood. Here we show that loss of Nrg3 in GFAP-Nrg3f/f mice increased glutamatergic transmission, but had no effect on GABAergic transmission. These phenotypes were observed in Nex-Nrg3f/f mice, where Nrg3 was specifically knocked out in pyramidal neurons, indicating that Nrg3 regulates glutamatergic transmission by a cell-autonomous mechanism. Consequently, in the absence of Nrg3 in pyramidal neurons, mutant mice displayed various behavioral deficits related to mental illnesses. We show that the Nrg3 mutation decreased paired-pulse facilitation, increased decay of NMDAR currents when treated with MK801, and increased minimal stimulation-elicited response, providing evidence that the Nrg3 mutation increases glutamate release probability. Notably, Nrg3 is a presynaptic protein that regulates the SNARE-complex assembly. Finally, increased Nrg3 levels, as observed in patients with severe mental illnesses, suppressed glutamatergic transmission. Together, these observations indicate that, unlike the prototype Nrg1, the effect of which is mediated by activating ErbB4 in interneurons, Nrg3 is critical in controlling glutamatergic transmission by regulating the SNARE complex at the presynaptic terminals, identifying a function of Nrg3 and revealing a pathophysiological mechanism for hypofunction of the glutamatergic pathway in Nrg3-related severe mental illnesses.
Assuntos
Ácido Glutâmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas SNARE/metabolismo , Animais , Comportamento Animal/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Transtornos Mentais/genética , Camundongos , Camundongos Transgênicos , Neurregulinas , Células Piramidais/metabolismoRESUMO
During aging, acetylcholine receptor (AChR) clusters become fragmented and denervated at the neuromuscular junction (NMJ). Underpinning molecular mechanisms are not well understood. We showed that LRP4, a receptor for agrin and critical for NMJ formation and maintenance, was reduced at protein level in aged mice, which was associated with decreased MuSK tyrosine phosphorylation, suggesting compromised agrin-LRP4-MuSK signaling in aged muscles. Transgenic expression of LRP4 in muscles alleviated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. LRP4 ubiquitination was augmented in aged muscles, suggesting increased LRP4 degradation as a mechanism for reduced LRP4. We found that sarcoglycan α (SGα) interacted with LRP4 and delayed LRP4 degradation in cotransfected cells. AAV9-mediated expression of SGα in muscles mitigated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. These observations support a model where compromised agrin-LRP4-MuSK signaling serves as a pathological mechanism of age-related NMJ decline and identify a novel function of SGα in stabilizing LRP4 for NMJ stability in aged mice.SIGNIFICANCE STATEMENT This study provides evidence that LRP4, a receptor of agrin that is critical for NMJ formation and maintenance, is reduced at protein level in aged muscles. Transgenic expression of LRP4 in muscles ameliorates AChR fragmentation and denervation and improves neuromuscular transmission in aged mice, demonstrating a critical role of the agrin-LRP4-MuSK signaling. Our study also reveals a novel function of SGα to prevent LRP4 degradation in aged muscles. Finally, we show that NMJ decline in aged mice can be mitigated by AAV9-mediated expression of SGα in muscles. These observations provide insight into pathological mechanisms of age-related NMJ decline and suggest that improved agrin-LRP4-MuSK signaling may be a target for potential therapeutic intervention.
Assuntos
Envelhecimento , Músculo Esquelético/metabolismo , Junção Neuromuscular/metabolismo , Receptores Colinérgicos/metabolismo , Receptores de LDL/metabolismo , Sarcoglicanas/metabolismo , Animais , Feminino , Proteínas Relacionadas a Receptor de LDL , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/inervação , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismoRESUMO
Fear learning and memory are vital for livings to survive, dysfunctions in which have been implicated in various neuropsychiatric disorders. Appropriate neuronal activation in amygdala is critical for fear memory. However, the underlying regulatory mechanisms are not well understood. Here we report that Neogenin, a DCC (deleted in colorectal cancer) family receptor, which plays important roles in axon navigation and adult neurogenesis, is enriched in excitatory neurons in BLA (Basolateral amygdala). Fear memory is impaired in male Neogenin mutant mice. The number of cFos+ neurons in response to tone-cued fear training was reduced in mutant mice, indicating aberrant neuronal activation in the absence of Neogenin. Electrophysiological studies show that Neogenin mutation reduced the cortical afferent input to BLA pyramidal neurons and compromised both induction and maintenance of Long-Term Potentiation evoked by stimulating cortical afferent, suggesting a role of Neogenin in synaptic plasticity. Concomitantly, there was a reduction in spine density and in frequency of miniature excitatory postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents, suggesting a role of Neogenin in forming excitatory synapses. Finally, ablating Neogenin in the BLA in adult male mice impaired fear memory likely by reducing mEPSC frequency in BLA excitatory neurons. These results reveal an unrecognized function of Neogenin in amygdala for information processing by promoting and maintaining neurotransmission and synaptic plasticity and provide insight into molecular mechanisms of neuronal activation in amygdala.SIGNIFICANCE STATEMENT Appropriate neuronal activation in amygdala is critical for information processing. However, the underlying regulatory mechanisms are not well understood. Neogenin is known to regulate axon navigation and adult neurogenesis. Here we show that it is critical for neurotransmission and synaptic plasticity in the amygdala and thus fear memory by using a combination of genetic, electrophysiological, behavioral techniques. Our studies identify a novel function of Neogenin and provide insight into molecular mechanisms of neuronal activation in amygdala for fear processing.
Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Medo/fisiologia , Aprendizagem/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Medo/psicologia , Masculino , Camundongos , Camundongos Transgênicos , Técnicas de Cultura de ÓrgãosRESUMO
Energy prediction plays a vital role in designing an efficient power management system for any environmentally powered Wireless Sensor Networks (WSNs). Most of the Moving Average (MA)-based energy prediction methods depend on past energy readings of the concerned node to predict its future energy availability. However, in case of RF powered WSNs the harvesting history of the main node along with neighbouring nodes can also be used to develop a more robust prediction technique. In this paper, we propose a Multi-Node energy prediction method for Radio Frequency Energy Harvesting (RF-EH) WSNs, which predicts the future energy availability by taking into account harvesting history of all nodes surrounding the main node. We analyse the effective distance for prediction and also develop a mathematical model to compute the optimum value of prediction interval, which has a major effect in prediction accuracy and system design, considering energy neutrality. Results show that Multi-Node prediction is less sensitive to prediction interval while inheriting the advantages of MA techniques. Also, nodes located at a larger distance were utilized less for prediction, and as the prediction interval increased, the utilization of more distant nodes decreased. Furthermore, we also establish a linear relation between the prediction interval and the energy threshold limit.
RESUMO
Clade 2.3.4.4 highly pathogenic avian influenza viruses (H5Nx) have spread from Asia to other parts of the world. Since 2014, human infections with clade 2.3.4.4 highly pathogenic avian influenza H5N6 viruses have been continuously reported in China. To investigate the genesis of the virus, we analyzed 123 H5 or N6 environmental viruses sampled from live-poultry markets or farms from 2012 to 2015 in Mainland China. Our results indicated that clade 2.3.4.4 H5N2/N6/N8 viruses shared the same hemagglutinin gene as originated in early 2009. From 2012 to 2015, the genesis of highly pathogenic avian influenza H5N6 viruses occurred via two independent pathways. Three major reassortant H5N6 viruses (reassortants A, B, and C) were generated. Internal genes of reassortant A and B viruses and reassortant C viruses derived from clade 2.3.2.1c H5N1 and H9N2 viruses, respectively. Many mammalian adaption mutations and antigenic variations were detected among the three reassortant viruses. Considering their wide circulation and dynamic reassortment in poultry, we highly recommend close monitoring of the viruses in poultry and humans. IMPORTANCE Since 2014, clade 2.3.4.4 highly pathogenic avian influenza (H5Nx) viruses have caused many outbreaks in both wild and domestic birds globally. Severe human cases with novel H5N6 viruses in this group were also reported in China in 2014 and 2015. To investigate the genesis of the genetic diversity of these H5N6 viruses, we sequenced 123 H5 or N6 environmental viruses sampled from 2012 to 2015 in China. Sequence analysis indicated that three major reassortants of these H5N6 viruses had been generated by two independent evolutionary pathways. The H5N6 reassortant viruses had been detected in most provinces of southern China and neighboring countries. Considering the mammalian adaption mutations and antigenic variation detected, the spread of these viruses should be monitored carefully due to their pandemic potential.
Assuntos
Vírus da Influenza A/genética , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Galinhas , China/epidemiologia , Patos , Evolução Molecular , Genes Virais , Variação Genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/imunologia , Filogenia , Filogeografia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/imunologia , Análise de Sequência de DNA , VirulênciaRESUMO
The novel low-pathogenic avian influenza A H7N9 viruses (LPAI H7N9 viruses) have been a threat to public health since their emergence in 2013 because of the high rates of mortality and morbidity that they cause. Recently, highly pathogenic variants of these avian influenza A H7N9 viruses (HPAI H7N9 viruses) have emerged and caused human infections and outbreaks among poultry in mainland China. However, it is still unclear how the HPAI H7N9 virus was generated and how it evolved and spread in China. Here, we show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region and spread southward to the Pearl River Delta region, possibly through live poultry trade. After introduction into the Pearl River Delta region, the origin LPAI H7N9 virus acquired four amino acid insertions in the hemagglutinin (HA) protein cleavage site and mutated into the HPAI H7N9 virus in late May 2016. Afterward, the HPAI H7N9 viruses further reassorted with LPAI H7N9 or H9N2 viruses locally and generated multiple different genotypes. As of 14 July 2017, the HPAI H7N9 viruses had spread from Guangdong Province to at least 12 other provinces. The rapid geographical expansion and genetic evolution of the HPAI H7N9 viruses pose a great challenge not only to public health but also to poultry production. Effective control measures, including enhanced surveillance, are therefore urgently needed.IMPORTANCE The LPAI H7N9 virus has caused five outbreak waves in humans and was recently reported to have mutated into highly pathogenic variants. It is unknown how the HPAI H7N9 virus originated, evolved, and disseminated in China. In this study, we comprehensively analyzed the sequences of HPAI H7N9 viruses from 28 human and 21 environmental samples covering eight provinces in China that were taken from November 2016 to June 2017. The results show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region. However, the insertion of four amino acids into the HA protein cleavage site of an LPAI H7N9 virus occurred in late May 2016 in the Pearl River Delta region. The mutated HPAI H7N9 virus further reassorted with LPAI H7N9 or H9N2 viruses that were cocirculating in poultry. Considering the rapid geographical expansion of the HPAI H7N9 viruses, effective control measures are urgently needed.
Assuntos
Subtipo H7N9 do Vírus da Influenza A/genética , Subtipo H7N9 do Vírus da Influenza A/patogenicidade , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Influenza Humana/epidemiologia , Influenza Humana/virologia , Aves Domésticas/virologia , Animais , Aves , China/epidemiologia , Surtos de Doenças , Evolução Molecular , Genótipo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Influenza Humana/transmissão , Mutação , Filogenia , Vírus ReordenadosRESUMO
In this paper, a broadband absorber utilizing monolayer molybdenum disulfide (MoS2) is proposed, and a generalized interference theory (GIT) is derived to investigate this absorber. Using the hybrid Lorentz-Drude and Gaussian model of monolayer MoS2 and the dyadic Green's functions, the propagation properties of monolayer MoS2 are first investigated. Then, a sandwich-like MoS2-based absorber design is proposed in the visible regime. The sandwich-like structure is mounted on a fully reflective gold mirror, which forms a Fabry-Perot resonator to strengthen light-matter interactions and enhance the absorption. To numerically calculate the absorption performance of this absorber, the GIT is next derived from interference theory. The numerical results indicate that an absorption ≥ 90% is obtained for a range of wavelengths (λ) from 389 to 517 nm, and this absorber can operate well, even with an angle of incidence up to 60°, which also verifies the prediction of the MoS2-based absorber mainly operating at λ < 700 nm. Afterward, the operating mechanism of the proposed design is determined using the theory of destructive interference. Finally, the proposed design and derived GIT are validated by a simulation using commercial electromagnetic software. The derived GIT drives the numerical investigation of the multilayer structure with various polarization types and angles of incidence of the waves, and the MoS2-based absorber can be used in several applications such as photoelectric storage and photoelectric detection.
RESUMO
Enterobacter cloacae strain R11 is a multidrug-resistant bacterium isolated from sewage water near a swine feedlot in China. Strain R11 can survive in medium containing up to 192 µg/mL polymyxin E, indicating a tolerance for this antibiotic that is significantly higher than that reported for other gram-negative bacteria. In this study, conjugation experiments showed that partial polymyxin E resistance could be transferred from strain R11 to Escherichia coli strain 25922, revealing that some genes related to polymyxin E resistance are plasmid-based. The complete genome sequence of this strain was determined, yielding a total of 4 993 008 bp (G+C content, 53.15%) and 4908 genes for the circular chromosome and 4 circular plasmids. Genome analysis revealed a total of 73 putative antibiotic resistance genes, including several polymyxin E resistance genes and genes potentially involved in multidrug resistance. These data provide insights into the genetic basis of the polymyxin E resistance and multidrug resistance of E. cloacae.