Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Biol Chem ; 299(2): 102861, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603766

RESUMO

Phosphatidylinositol (PtdIns) transfer proteins (PITPs) enhance the activities of PtdIns 4-OH kinases that generate signaling pools of PtdIns-4-phosphate. In that capacity, PITPs serve as key regulators of lipid signaling in eukaryotic cells. Although the PITP phospholipid exchange cycle is the engine that stimulates PtdIns 4-OH kinase activities, the underlying mechanism is not understood. Herein, we apply an integrative structural biology approach to investigate interactions of the yeast PITP Sec14 with small-molecule inhibitors (SMIs) of its phospholipid exchange cycle. Using a combination of X-ray crystallography, solution NMR spectroscopy, and atomistic MD simulations, we dissect how SMIs compete with native Sec14 phospholipid ligands and arrest phospholipid exchange. Moreover, as Sec14 PITPs represent new targets for the development of next-generation antifungal drugs, the structures of Sec14 bound to SMIs of diverse chemotypes reported in this study will provide critical information required for future structure-based design of next-generation lead compounds directed against Sec14 PITPs of virulent fungi.


Assuntos
Antifúngicos , Desenho de Fármacos , Proteínas de Transferência de Fosfolipídeos , Proteínas de Saccharomyces cerevisiae , Transporte Biológico/efeitos dos fármacos , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/antagonistas & inibidores , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Transdução de Sinais , Antifúngicos/química , Antifúngicos/farmacologia
2.
Biophys J ; 121(14): 2781-2793, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35690905

RESUMO

Microbial rhodopsins (MRho) are vital proteins in Haloarchaea for solar light sensing in extreme living environments. Among them, Haloquadratum walsbyi (Hw) is a species known to survive high MgCl2 concentrations, with a total of three MRhos identified, including a high-acid-tolerance light-driven proton outward pump, HwBR, a chloride-insensitive chloride pump, HwHR, and a functionally unknown HwMR. Here, we showed that HwMR is the sole magnesium-sensitive MRho among all tested MRho proteins from Haloarchaea. We identified at least D84 as one of the key residues mediating such magnesium ion association in HwMR. Sequence analysis and molecular modeling suggested HwMR to have an extra H8 helix in the cytosolic region like those in signal-transduction-type MRho of deltarhodopsin-3 (dR-3) and Anabaena sensory rhodopsin (ASR). Further, HwMR showed a distinctly prolonged M-state formation under a high concentration of Mg2+. On the other hand, an H8 helix truncated mutant preserved photocycle kinetics like the wild type, but it led to missing M-state structure. Our findings clearly suggested not only that HwMR is a novel Mg2+-associated protein but that the association with both Mg2+ and the H8 domain stabilizes M-state formation in HwMR. We conclude that Mg2+ association and H8 are crucial in stabilizing HwMR M state, which is a well-known photoreceptor signaling state.


Assuntos
Anabaena , Rodopsinas Sensoriais , Anabaena/química , Cloretos/metabolismo , Magnésio/metabolismo , Bombas de Próton/metabolismo , Rodopsinas Microbianas/metabolismo , Rodopsinas Sensoriais/metabolismo
3.
Angew Chem Int Ed Engl ; 61(39): e202210365, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35938731

RESUMO

The access to full performance of state-of-the-art Li-ion batteries (LIBs) is hindered by the mysterious lithium plating behavior. A rapid quantified lithium plating determination method compatible with actual working conditions is an urgent necessity for safe working LIBs. In this contribution, the relationship between electrical double layer (EDL) capacitance and electrochemical active surface area (ECSA) of graphite anodes during the Li-ion intercalation and Li plating processes is unveiled. We propose an operando lithium plating determination method based on the dynamic capacitance measurement (DCM) test. Reasonable selection of alternating current (AC) frequency protects the anodic responses from the interference of cathodic responses, which allows DCM to be applied in practical LIBs. The onset of lithium plating can be quantitatively traced, demonstrating the promise for real-time operando determination for lithium plating in a working battery.

4.
Angew Chem Int Ed Engl ; 60(23): 13007-13012, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33793052

RESUMO

Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of "dead Li" can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5 Mn0.3 Co0.2 O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast-charging capability, low-temperature performance, and energy density of practical lithium-ion batteries.

5.
Angew Chem Int Ed Engl ; 59(20): 7743-7747, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32160379

RESUMO

Lithium metal is recognized as one of the most promising anode materials owing to its ultrahigh theoretical specific capacity and low electrochemical potential. Nonetheless, dendritic Li growth has dramatically hindered the practical applications of Li metal anodes. Realizing spherical Li deposition is an effective approach to avoid Li dendrite growth, but the mechanism of spherical deposition is unknown. Herein, a diffusion-reaction competition mechanism is proposed to reveal the rationale of different Li deposition morphologies. By controlling the rate-determining step (diffusion or reaction) of Li deposition, various Li deposition scenarios are realized, in which the diffusion-controlled process tends to lead to dendritic Li deposition while the reaction-controlled process leads to spherical Li deposition. This study sheds fresh light on the dendrite-free Li metal anode and guides to achieve safe batteries to benefit future wireless and fossil-fuel-free world.

6.
Biophys J ; 112(12): 2503-2519, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636908

RESUMO

In this study, we investigated the ultrafast dynamics of bacteriorhodopsins (BRs) from Haloquadratum walsbyi (HwBR) and Haloarcula marismortui (HmBRI and HmBRII). First, the ultrafast dynamics were studied for three HwBR samples: wild-type, D93N mutation, and D104N mutation. The residues of the D93 and D104 mutants correspond to the control by the Schiff base proton acceptor and donor of the proton translocation subchannels. Measurements indicated that the negative charge from the Schiff base proton acceptor residue D93 interacts with the ultrafast and substantial change of the electrostatic potential associated with chromophore isomerization. By contrast, the Schiff base proton donor assists the restructuring of the chromophore cavity hydrogen-bond network during the thermalization of the vibrational hot state. Second, the ultrafast dynamics of the wild-types of HwBR, HmBRI, and HmBRII were compared. Measurements demonstrated that the hydrogen-bond network in the extracellular region in HwBR and HmBRII slows the photoisomerization of retinal chromophores, and the negatively charged helices on the cytoplasmic side of HwBR and HmBRII accelerate the thermalization of the vibrational hot state of retinal chromophores. The similarity of the correlation spectra of the wild-type HmBRI and D104N mutant of HwBR indicates that inactivation of the Schiff base proton donor induces a positive charge on the helices of the cytoplasmic side.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/efeitos da radiação , Bacteriorodopsinas/genética , Bacteriorodopsinas/metabolismo , Escherichia coli , Halobacteriaceae , Ligação de Hidrogênio , Isomerismo , Lasers , Mutação , Processos Fotoquímicos , Prótons , Bases de Schiff , Homologia de Sequência de Aminoácidos , Análise Espectral , Vibração
7.
Angew Chem Int Ed Engl ; 56(27): 7764-7768, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28466583

RESUMO

Lithium (Li) metal is the most promising electrode for next-generation rechargeable batteries. However, the challenges induced by Li dendrites on a working Li metal anode hinder the practical applications of Li metal batteries. Herein, nitrogen (N) doped graphene was adopted as the Li plating matrix to regulate Li metal nucleation and suppress dendrite growth. The N-containing functional groups, such as pyridinic and pyrrolic nitrogen in the N-doped graphene, are lithiophilic, which guide the metallic Li nucleation causing the metal to distribute uniformly on the anode surface. As a result, the N-doped graphene modified Li metal anode exhibits a dendrite-free morphology during repeated Li plating and demonstrates a high Coulombic efficiency of 98 % for near 200 cycles.

8.
Biophys J ; 111(12): 2600-2607, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28002736

RESUMO

Halorhodopsin (HR) is a seven-transmembrane retinylidene protein from haloarchaea that is commonly known to function as a light-driven inward chloride pump. However, previous studies have indicated that despite the general characteristics that most HRs share, HRs from distinct species differ in many aspects. We present indium-tin-oxide-based photocurrent measurements that reveal a light-induced signal generated by proton release that is observed solely in NpHR via purified protein-based assays, demonstrating that indeed HRs are not all identical. We conducted mutagenesis studies on several conserved residues that are considered critical for chloride stability among HRs. Intriguingly, the photocurrent signals were eliminated after specific point mutations. We propose an NpHR light-driven, cytoplasmic-side proton circulation model to explain the unique light-induced photocurrent recorded in NpHR. Notably, the photocurrent and various photocycle intermediates were recorded simultaneously. This approach provides a high-resolution method for further investigations of the proton-assisted chloride translocation mechanism.


Assuntos
Halobacteriaceae/metabolismo , Halobacteriaceae/efeitos da radiação , Halorrodopsinas/metabolismo , Luz , Prótons , Cloretos/metabolismo , Transporte de Íons/efeitos da radiação
9.
J Neurosci ; 33(22): 9546-62, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23719821

RESUMO

Neuronal maturation during development is a multistep process regulated by transcription factors. The transcription factor RORα (retinoic acid-related orphan receptor α) is necessary for early Purkinje cell (PC) maturation but is also expressed throughout adulthood. To identify the role of RORα in mature PCs, we used Cre-lox mouse genetic tools in vivo that delete it specifically from PCs between postnatal days 10-21. Up to 14 d of age, differences between mutant and control PCs were not detectable: both were mono-innervated by climbing fibers (CFs) extending along their well-developed dendrites with spiny branchlets. By week 4, mutant mice were ataxic, some PCs had died, and remaining PC soma and dendrites were atrophic, with almost complete disappearance of spiny branchlets. The innervation pattern of surviving RORα-deleted PCs was abnormal with several immature characteristics. Notably, multiple functional CF innervation was reestablished on these mature PCs, simultaneously with the relocation of CF contacts to the PC soma and their stem dendrite. This morphological modification of CF contacts could be induced even later, using lentivirus-mediated depletion of rora from adult PCs. These data show that the late postnatal expression of RORα cell-autonomously regulates the maintenance of PC dendritic complexity, and the CF innervation status of the PC (dendritic vs somatic contacts, and mono-innervation vs multi-innervation). Thus, the differentiation state of adult neurons is under the control of transcription factors; and in their absence, adult neurons lose their mature characteristics and acquire some characteristics of an earlier developmental stage.


Assuntos
Fibras Nervosas/fisiologia , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Células de Purkinje/fisiologia , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Comportamento Animal/fisiologia , Contagem de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , DNA/genética , Fatores de Transcrição Forkhead/genética , Vetores Genéticos , Humanos , Imuno-Histoquímica , Relações Interpessoais , Lentivirus/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica , Força Muscular/genética , Força Muscular/fisiologia , Mutação/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Reação em Cadeia da Polimerase , Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Proteínas Repressoras/genética , Proteína Vesicular 1 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética
10.
Elife ; 132024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687676

RESUMO

Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and ßII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of full-length Pin1 complexed to the C-terminal tail of PKCßII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a conformation in which it uses the WW and PPIase domains to engage two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, respectively. Hydrophobic motif is a non-canonical Pin1-interacting element. The structural information combined with the results of extensive binding studies and experiments in cultured cells suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA , Ligação Proteica , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/genética , Humanos , Proteína Quinase C/metabolismo , Proteína Quinase C/química , Proteína Quinase C/genética , Conformação Proteica
11.
Adv Biol Regul ; 87: 100938, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496344

RESUMO

The peptidyl-prolyl isomerase Pin1 cooperates with proline-directed kinases and phosphatases to regulate multiple oncogenic pathways. Pin1 specifically recognizes phosphorylated Ser/Thr-Pro motifs in proteins and catalyzes their cis-trans isomerization. The Pin1-catalyzed conformational changes determine the stability, activity, and subcellular localization of numerous protein substrates. We conducted a survey of eukaryotic protein kinases that are regulated by Pin1 and whose Pin1 binding sites have been identified. Our analyses reveal that Pin1 target sites in kinases do not fall exclusively within the intrinsically disordered regions of these enzymes. Rather, they fall into three groups based on their location: (i) within the catalytic kinase domain, (ii) in the C-terminal kinase region, and (iii) in regulatory domains. Some of the kinases downregulated by Pin1 activity are tumor-suppressing, and all kinases upregulated by Pin1 activity are functionally pro-oncogenic. These findings further reinforce the rationale for developing Pin1-specific inhibitors as attractive pharmaceuticals for cancer therapy.


Assuntos
Neoplasias , Peptidilprolil Isomerase , Humanos , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Eucariotos/metabolismo , Proteínas Quinases/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Fosforilação , Ligação Proteica
12.
bioRxiv ; 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37781616

RESUMO

Regulated hydrolysis of the phosphoinositide phosphatidylinositol(4,5)-bis-phosphate to diacylglycerol and inositol-1,4,5-P3 defines a major eukaryotic pathway for translation of extracellular cues to intracellular signaling circuits. Members of the lipid-activated protein kinase C isoenzyme family (PKCs) play central roles in this signaling circuit. One of the regulatory mechanisms employed to downregulate stimulated PKC activity is via a proteasome-dependent degradation pathway that is potentiated by peptidyl-prolyl isomerase Pin1. Here, we show that contrary to prevailing models, Pin1 does not regulate conventional PKC isoforms α and ßII via a canonical cis-trans isomerization of the peptidyl-prolyl bond. Rather, Pin1 acts as a PKC binding partner that controls PKC activity via sequestration of the C-terminal tail of the kinase. The high-resolution structure of Pin1 complexed to the C-terminal tail of PKCßII reveals that a novel bivalent interaction mode underlies the non-catalytic mode of Pin1 action. Specifically, Pin1 adopts a compact conformation in which it engages two conserved phosphorylated PKC motifs, the turn motif and hydrophobic motif, the latter being a non-canonical Pin1-interacting element. The structural information, combined with the results of extensive binding studies and in vivo experiments suggest that non-catalytic mechanisms represent unappreciated modes of Pin1-mediated regulation of AGC kinases and other key enzymes/substrates.

13.
Adv Mater ; 35(42): e2301881, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37718507

RESUMO

The Li-plating behavior of Li-ion batteries under fast-charging conditions is elusive due to a lack of reliable indicators of the Li-plating onset. In this work, the relaxation time constant of the charge-transfer process (τCT ) is proposed to be promising for the determination of Li-plating onset. A novel pulse/relaxation test method enables rapid access to the τCT of the graphite anode during battery operation, applicable to both half and full batteries. The diagnosis of Li plating at varying temperatures and charging rates enriches the cognition of Li-plating behaviors. Li plating at low temperatures and high charging rates can be avoided because of the battery voltage limitations. Nevertheless, after the onset, severe Li plating evolves rapidly under harsh charging conditions, while the Li-plating process under benign charging conditions is accompanied by a simultaneous Li-intercalation process. The quantitative estimates indicate that Li plating at high temperatures/high charging rates leads to more irreversible capacity losses. This facile method with rational scientific principles can provide inspiration for exploring the safe boundaries of Li-ion batteries.

14.
Adv Biol Regul ; 84: 100891, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35240534

RESUMO

Virulent fungi represent a particularly difficult problem in the infectious disease arena as these organisms are eukaryotes that share many orthologous activities with their human hosts. The fact that these activities are often catalyzed by conserved proteins places additional demands on development of pharmacological strategies for specifically inhibiting target fungal activities without imposing undesirable secondary effects on the host. While deployment of a limited set of anti-mycotics has to date satisfied the clinical needs for treatment of fungal infections, the recent emergence of multi-drug resistant fungal 'superbugs' now poses a serious global health threat with rapidly diminishing options for treatment. This escalating infectious disease problem emphasizes the urgent need for development of new classes of anti-mycotics. In that regard, Sec14 phosphatidylinositol transfer proteins offer interesting possibilities for interfering with fungal phosphoinositide signaling with exquisite specificity and without targeting the highly conserved lipid kinases responsible for phosphoinositide production. Herein, we review the establishment of proof-of-principle that demonstrates the feasibility of such an approach. We also describe the lead compounds of four chemotypes that directly target fungal Sec14 proteins. The rules that pertain to the mechanism(s) of Sec14 inhibition by validated small molecule inhibitors, and the open questions that remain, are discussed - as are the challenges that face development of next generation Sec14-directed inhibitors.


Assuntos
Micoses , Proteínas de Saccharomyces cerevisiae , Humanos , Inositol , Micoses/tratamento farmacológico , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
15.
Adv Mater ; 33(8): e2004128, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33432664

RESUMO

Lithium (Li) metal is one of the most promising alternative anode materials of next-generation high-energy-density batteries demanded for advanced energy storage in the coming fourth industrial revolution. Nevertheless, disordered Li deposition easily causes short lifespan and safety concerns and thus severely hinders the practical applications of Li metal batteries. Tremendous efforts are devoted to understanding the mechanism for Li deposition, while the final deposition morphology tightly relies on the Li nucleation and early growth. Here, the recent progress in insightful and influential models proposed to understand the process of Li deposition from nucleation to early growth, including the heterogeneous model, surface diffusion model, crystallography model, space charge model, and Li-SEI model, are highlighted. Inspired by the abovementioned understanding on Li nucleation and early growth, diverse anode-design strategies, which contribute to better batteries with superior electrochemical performance and dendrite-free deposition behavior, are also summarized. This work broadens the horizon for practical Li metal batteries and also sheds light on more understanding of other important metal-based batteries involving the metal deposition process.

16.
Chem Sci ; 12(12): 4425-4431, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34163707

RESUMO

Interest in piezochromic luminescence has increased in recent decades, even though it is mostly limited to pure organic compounds and fluorescence. In this work, a Cu3Pz3 (Cu3, Pz: pyrazolate) cyclic trinuclear complex (CTC) with two different crystalline polymorphs, namely 1a and 1b, was synthesized. The CTC consists of two functional moieties: carbazole (Cz) chromophore and Cu3 units. In crystals of 1a, discrete Cz-Cu3-Cu3-Cz stacking was found, showing abnormal pressure-induced phosphorescence enhancement (PIPE), which was 12 times stronger at 2.23 GPa compared to under ambient conditions. This novel observation is ascribed to cooperation between heavy-atom effects (i.e., from Cu atoms) and metal-ligand charge-transfer promotion. The infinite π-π stacking of Cz motifs was observed in 1b and it exhibited good piezochromism as the pressure increased. This work demonstrates a new concept in the design of piezochromic materials to achieve PIPE via combining organic chromophores and metal-organic phosphorescence emitters.

17.
Research (Wash D C) ; 2019: 4608940, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31549064

RESUMO

Lithium metal constitutes promising anode materials but suffers from dendrite growth. Lithiophilic host materials are highly considered for achieving uniform lithium deposition. Precise construction of lithiophilic sites with desired structure and homogeneous distribution significantly promotes the lithiophilicity of lithium hosts but remains a great challenge. In this contribution, a framework porphyrin (POF) material with precisely constructed lithiophilic sites in regard to chemical structure and geometric position is employed as the lithium host to address the above issues for dendrite-free lithium metal anodes. The extraordinary lithiophilicity of POF even beyond lithium nuclei validated by DFT simulations and lithium nucleation overpotentials affords a novel mechanism of favorable lithium nucleation to facilitate uniform nucleation and inhibit dendrite growth. Consequently, POF-based anodes demonstrate superior electrochemical performances with high Coulombic efficiency over 98%, reduced average voltage hysteresis, and excellent stability for 300 cycles at 1.0 mA cm-2, 1.0 mAh cm-2 superior to both Cu and graphene anodes. The favorable lithium nucleation mechanism on POF materials inspires further investigation of lithiophilic electrochemistry and development of lithium metal batteries.

18.
Sci Adv ; 5(2): eaau7728, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30793031

RESUMO

The uncontrollable growth of lithium (Li) dendrites seriously impedes practical applications of Li metal batteries. Various lithiophilic conductive frameworks, especially carbon hosts, are used to guide uniform Li nucleation and thus deliver a dendrite-free composite anode. However, the lithiophilic nature of these carbon hosts is poorly understood. Herein, the lithiophilicity chemistry of heteroatom-doped carbon is investigated through both first principles calculations and experimental verifications to guide uniform Li nucleation. The electronegativity, local dipole, and charge transfer are proposed to reveal the lithiophilicity of doping sites. Li bond chemistry further deepens the understanding of lithiophilicity. The O-doped and O/B-co-doped carbons exhibit the best lithiophilicity among single-doped and co-doped carbons, respectively. The excellent lithiophilicity achieved by O-doping carbon is further validated by Li nucleation overpotential measurement. This work uncovers the lithiophilicity chemistry of heteroatom-doped carbons and affords a mechanistic guidance to Li metal anode frameworks for safe rechargeable batteries.

19.
Adv Mater ; 31(8): e1807131, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30614585

RESUMO

Lithium (Li) metal-based battery is among the most promising candidates for next-generation rechargeable high-energy-density batteries. Carbon materials are strongly considered as the host of Li metal to relieve the powdery/dendritic Li formation and large volume change during repeated cycles. Herein, we describe the formation of a thin lithiophilic LiC6 layer between carbon fibers (CFs) and metallic Li in Li/CF composite anode obtained through a one-step rolling method. An electron deviation from Li to carbon elevates the negativity of carbon atoms after Li intercalation as LiC6 , which renders stronger binding between carbon framework and Li ions. The Li/CF | Li/CF batteries can operate for more than 90 h with a small polarization voltage of 120 mV at 50% discharge depth. The Li/CF | sulfur pouch cell exhibits a high discharge capacity of 3.25 mAh cm-2 and a large capacity retention rate of 98% after 100 cycles at 0.1 C. It is demonstrated that the as-obtained Li/CF composite anode with lithiophilic LiC6 layers can effectively alleviate volume expansion and hinder dendritic and powdery morphology of Li deposits. This work sheds fresh light on the role of interfacial layers between host structure and Li metal in composite anode for long-lifespan working batteries.

20.
J Pharmacol Exp Ther ; 326(3): 966-74, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18562561

RESUMO

We and others have demonstrated that fibrates [peroxisome proliferator-activated receptor (PPAR)alpha agonists] and statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) exerted neuroprotective and pleiotropic effects in experimental models of traumatic brain injury (TBI). Because the combination of statins and fibrates synergistically enhanced PPARalpha activation, we hypothesized that the combination of both drugs may exert more important and/or prolonged beneficial effects in TBI than each alone. In this study, we examined the combination of fenofibrate with simvastatin, administered 1 and 6 h after injury, on the consequences of TBI. First, our dose-effect study demonstrated that the most efficient dose of simvastatin (37.5 mg/kg) reduced post-traumatic neurological deficits and brain edema. Then, the effects of the combination of fenofibrate (50 mg/kg) and simvastatin (37.5 mg/kg), given p.o. at 1 and 6 h after TBI, were evaluated on the TBI consequences in the early and late phase after injury. The combination exerted more sustained neurological recovery-promoting and antiedematous effects than monotherapies, and it synergistically decreased the post-traumatic brain lesion. Furthermore, a delayed treatment given p.o. at 3 and 8 h after TBI with the combination was still efficient on neurological deficits induced by TBI, but it failed to reduce the brain edema at 48 h. The present data represent the first demonstration that the combination of fenofibrate and simvastatin exerts prolonged and synergistic neuroprotective effects than each drug alone. Thus, these results may have important therapeutic significance for the treatment of TBI.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Modelos Animais de Doenças , Fenofibrato/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , PPAR alfa/agonistas , Sinvastatina/administração & dosagem , Animais , Lesões Encefálicas/metabolismo , Quimioterapia Combinada , Masculino , PPAR alfa/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA