Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Angew Chem Int Ed Engl ; 62(17): e202300334, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-36859620

RESUMO

We herein describe the chiral diboron-templated asymmetric homocoupling of aryl alkyl ketimines, providing for the first time a series of chiral vicinal tetrasubstituted diamines with excellent ee values and good to high yields. The powerful and efficient diboron-participated [3,3]-sigmatropic rearrangement is successfully demonstrated by the homocoupling of a variety of ketimines thanks to the rational design and engineering of chiral diborons. Systematic DFT studies suggest that two chiral diborons adopt different conformational assembling strategies to couple the diboron template with ketimine substrates in their tight concerted transition states to ensure the excellent enantioselectivities. The synthetic value of chiral vicinal tetrasubstituted diamines is demonstrated by the asymmetric α-bromination of aliphatic aldehydes by employing a chiral vicinal tetrasubstituted diamine-based organocatalyst.

2.
Angew Chem Int Ed Engl ; 61(34): e202207008, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35713949

RESUMO

A rhodium(I)-diene catalyzed highly enantioselective C(sp2 )-H functionalization of simple unprotected indoles, pyrroles, and their common analogues such as furans, thiophenes, and benzofurans with arylvinyldiazoesters has been developed for the first time. This transformation features unusual site-selectivity exclusively at the vinyl terminus of arylvinylcarbene and enables a reliable and rapid synthetic protocol to access a distinctive class of diarylmethine-bearing α,ß-unsaturated esters containing a one or two heteroarene-attached tertiary carbon stereocenter in high yields and excellent enantioselectivities under mild reaction conditions. Mechanistic studies and DFT calculations suggest that, compared to the aniline substrate, the more electron-rich indole substrate lowers the C-C addition barrier and alters the rate-determining step to the reductive elimination, leading to different isotope effect.


Assuntos
Ródio , Catálise , Indóis , Metano/análogos & derivados , Pirróis , Estereoisomerismo
3.
Behav Brain Funct ; 14(1): 12, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884193

RESUMO

BACKGROUND: Predatory stress as a psychological stressor can elicit the activation of the hypothalamic-pituitary-adrenal (HPA) axis, which is involved in the dialogue of the neuroimmunoendocrine network. The brain has been proven to regulate the activity of the HPA axis by way of lateralization. In the present study, we probed the pivotal elements of the HPA circuitry including CRH, GR and a multifunctional cytokine in behavior-lateralized mice to determine their changes when the animals were subjected to predator exposure. METHODS: Behavior-lateralized mice were classified into left-pawed and right-pawed mice through a paw-preference test. Thereafter, mice in the acute stress group received a single 60-min cat exposure, and mice in the chronic group received daily 60-min cat exposure for 14 consecutive days. The plasma CS and TNF-α were determined by ELISA, the hypothalamic CRH mRNA and hippocampal GR mRNA were detected by real-time PCR, and the hippocampal GR protein was detected by western blot analysis. RESULTS: The results revealed that the levels of plasma CS were significantly elevated after chronic predatory exposure in both right-pawed and left-pawed mice; the right-pawed mice exhibited a higher plasma CS level than the left-pawed mice. Similarly, the acute or chronic cat exposure could induce the release of plasma TNF-α, and the left-pawed mice tended to show a higher level after the acute stress. Chronic stress significantly upregulated the expression of hypothalamic CRH mRNA in both left-pawed and right-pawed mice. Normally, the left-pawed mice exhibited a higher GR expression in the hippocampus than the right-pawed mice. After the cat exposure, the expression of GR in both left-pawed and right-pawed mice was revealed to be greatly downregulated. CONCLUSION: Our findings indicate that predatory stress can invoke a differential response of stressful elements in behavior-lateralized mice. Some of these responses shaped by behavioral lateralization might be helpful for facilitating adaption to various stimuli.


Assuntos
Lateralidade Funcional/fisiologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Comportamento Predatório/fisiologia , Estresse Psicológico/sangue , Estresse Psicológico/psicologia , Animais , Gatos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
4.
Int J Mol Sci ; 19(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570670

RESUMO

Oxymatrine (OMT) is a strong immunosuppressive agent that has been used in the clinic for many years. In the present study, by using plaque inhibition, luciferase reporter plasmids, qRT-PCR, western blotting, and ELISA assays, we have investigated the effect and mechanism of OMT on influenza A virus (IAV) replication and IAV-induced inflammation in vitro and in vivo. The results showed that OMT had excellent anti-IAV activity on eight IAV strains in vitro. OMT could significantly decrease the promoter activity of TLR3, TLR4, TLR7, MyD88, and TRAF6 genes, inhibit IAV-induced activations of Akt, ERK1/2, p38 MAPK, and NF-κB pathways, and suppress the expressions of inflammatory cytokines and MMP-2/-9. Activators of TLR4, p38 MAPK and NF-κB pathways could significantly antagonize the anti-IAV activity of OMT in vitro, including IAV replication and IAV-induced cytopathogenic effect (CPE). Furthermore, OMT could reduce the loss of body weight, significantly increase the survival rate of IAV-infected mice, decrease the lung index, pulmonary inflammation and lung viral titter, and improve pulmonary histopathological changes. In conclusion, OMT possesses anti-IAV and anti-inflammatory activities, the mechanism of action may be linked to its ability to inhibit IAV-induced activations of TLR4, p38 MAPK, and NF-κB pathways.


Assuntos
Alcaloides/farmacologia , Vírus da Influenza A/efeitos dos fármacos , NF-kappa B/metabolismo , Quinolizinas/farmacologia , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células A549 , Animais , Antivirais/farmacologia , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , Cães , Humanos
5.
Fish Physiol Biochem ; 43(5): 1223-1235, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28425012

RESUMO

The aim of this study is to explore the effect of Aeromonas hydrophila on the intestinal mucosal barrier structure and intestinal permeability in grass carp (Ctenopharyngodon idella). Histopathological examinations showed that A. hydrophila induced severe intestinal lesions, including inflammatory cell infiltration and intestinal villus fusion and swelling. Messenger RNA (mRNA) expression of the inflammatory cytokines TNF-α, IL-1ß, IL-8, IL-10 and MyD88 was significantly increased after infection with A. hydrophila. The permeability of intestinal mucosa was determined using Evans blue (EB) and D-lactic acid. The results indicated that the levels of EB and serum D-lactic acid were significantly increased after infection with A. hydrophila (p < 0.05). Our results also indicated that the intestinal mucosal barrier injury induced by A. hydrophila infection was closely associated with the expression of the tight junction (TJ) protein zonula occludens-1 (ZO-1), occludin, claudin b and claudin c as well as the activity of Na+, K+-ATPase and Ca2+, Mg2+-ATPase. Lower mRNA levels of occludin and lower Na+, K+-ATPase and Ca2+, Mg2+-ATPase activity in the intestines were observed after challenge. ZO-1 and claudin c were significantly increased 24 h after infection with A. hydrophila. The most interesting finding was that claudin b also significantly increased 24 h after challenge and then decreased to lower levels at 72, 120 and 168 h post-infection compared to the PBS-treated control group. The results demonstrated that grass carp infection with A. hydrophila induced intestinal inflammation and impaired the structure and function of the intestinal mucosal barrier.


Assuntos
Aeromonas hydrophila , Carpas/microbiologia , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Mucosa Intestinal/patologia , Animais , Doenças dos Peixes/patologia
6.
Molecules ; 20(4): 6794-807, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25884554

RESUMO

Salvia miltiorrhiza Bunge has been reported to possess excellent antifibrotic activity. In this study, we have investigated the effect and mechanism of tanshinone IIA (Tan-IIA), salvianolic acid A (Sal-A) and salvianolic acid B (Sal-B), the important active compounds of Salvia miltiorrhiza Bunge, on areca nut extract (ANE)-induced oral submucous fibrosis (OSF) in vitro. Through human procollagen gene promoter luciferase reporter plasmid assay, hydroxyproline assay, gelatin zymography assay, qRT-PCR, ELISA and Western blot assay, the influence of these three compounds on ANE-stimulated cell viability, collagen accumulation, procollagen gene transcription, MMP-2/-9 activity, MMP-1/-13 and TIMP-1/-2 expression, cytokine secretion and the activation of PI3K/AKT, ERK/JNK/p38 MAPK and TGF-ß/Smads pathways were detected. The results showed that Tan-IIA, Sal-A and Sal-B could significantly inhibit the ANE-stimulated abnormal viability and collagen accumulation of mice oral mucosal fibroblasts (MOMFs), inhibit the transcription of procollagen gene COL1A1 and COL3A1, increase MMP-2/-9 activity, decrease TIMP-1/-2 expression and inhibit the transcription and release of CTGF, TGF-ß1, IL-6 and TNF-α; Tan-IIA, Sal-A and Sal-B also inhibited the ANE-induced activation of AKT and ERK MAPK pathways in MOMFs and the activation of TGF-ß/Smads pathway in HaCaT cells. In conclusion, Tan-IIA, Sal-A and Sal-B possess excellent antifibrotic activity in vitro and can possibly be used to promote the rehabilitation of OSF patients.


Assuntos
Abietanos/farmacologia , Areca/química , Benzofuranos/farmacologia , Ácidos Cafeicos/farmacologia , Lactatos/farmacologia , Nozes/química , Fibrose Oral Submucosa/etiologia , Exsudatos de Plantas/efeitos adversos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colágeno/genética , Colágeno/metabolismo , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Técnicas In Vitro , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Fibrose Oral Submucosa/tratamento farmacológico , Fibrose Oral Submucosa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Fator de Crescimento Transformador beta/biossíntese
7.
Fish Physiol Biochem ; 41(3): 803-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25822587

RESUMO

Research into the pharmacokinetics and residue elimination of oxytetracycline (OTC) is important both to determine the optimal dosage regimens and to establish a safe withdrawal time in fish. A depletion study is presented here for OTC in Megalobrama amblycephala with a single-dose (100 mg/kg) and multiple-dose (100 mg/kg for five consecutive days) oral administration. The study was conducted at 25 °C. As a result, a one-compartment model was developed. For the single dose, the absorption half-life was 5.79, 9.40, 6.96, and 8.06 h in the plasma, liver, kidney, and muscle, respectively. However, the absorption half-life was 3.62, 7.33, 4.59, and 6.02 h with multiple-dose oral administration. The elimination half-time in the plasma, liver, kidney, and muscle was 58.63, 126.43, 65.1, and 58.85 h when M. amblycephala was treated with a single dose. However, the elimination half-time changed to 91.75, 214.87, 126.22, and 135.84 h with multiple-dose oral administration.


Assuntos
Cyprinidae/metabolismo , Oxitetraciclina/farmacocinética , Absorção Fisico-Química , Administração Oral , Animais , Área Sob a Curva , Relação Dose-Resposta a Droga , Meia-Vida , Rim/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Oxitetraciclina/administração & dosagem , Oxitetraciclina/sangue
8.
J Oral Pathol Med ; 43(6): 464-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24484214

RESUMO

BACKGROUND: Oral submucous fibrosis (OSF) is a premalignant and fibrosing disease, which is closely associated with the habit of chewing areca nut. Panax notoginseng Buck F. H. Chen is an often used antifibrotic and antitumor agent. To treat areca nut-induced OSF, we have developed a chewable tablet, in which one of the major medicines is total Panax notoginseng saponins (PNS). In this study, we have investigated the antifibrotic effect and mechanism of PNS on areca nut-induced OSF in vitro. METHODS: Through human procollagen gene promoter luciferase reporter plasmid, hydroxyproline assay, gelatin zymography, qRT-PCR, ELISA, and Western blot, the influences of PNS on areca nut extract (ANE)-induced cell growth, collagen accumulation, procollagen gene transcription, MMP-2/-9 activity, MMP-1/-13 and TIMP-1/-2 expression, cytokine secretion, and the activation of PI3K/AKT, ERK/JNK/p38 MAPK, and TGFß/Smads pathways were detected. RESULTS: Panax notoginseng saponins could inhibit the ANE-induced abnormal growth and collagen accumulation of oral mucosal fibroblasts in a concentration-dependent manner. PNS (25 µg/ml) could significantly inhibit the ANE-induced expression of Col1A1 and Col3A1, augment the ANE-induced decrease of MMP-2/-9 activity, inhibit the ANE-induced increase of TIMP-1/-2 expression, and decrease the ANE-induced transcription and release of CTGF, TGFß1, IL-6, and TNFα. PNS (25 µg/ml) also significantly inhibited the ANE-induced activation of AKT and ERK/JNK/p38 MAPK pathways in oral mucosal fibroblasts and the ANE-induced activation of TGFß/smad pathway in HaCaT cells. CONCLUSION: Panax notoginseng saponins possess excellent anti-OSF activity, and its mechanism may be related to its ability to inhibit the ANE-induced activation of PI3K/AKT, ERK/JNK/p38 MAPK, and TGFß/smad pathways.


Assuntos
Areca/efeitos adversos , Mucosa Bucal/efeitos dos fármacos , Nozes/efeitos adversos , Fibrose Oral Submucosa/patologia , Panax notoginseng , Extratos Vegetais/farmacologia , Saponinas/farmacologia , Animais , Técnicas de Cultura de Células , Linhagem Celular , Colágeno Tipo I/efeitos dos fármacos , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/efeitos dos fármacos , Fator de Crescimento do Tecido Conjuntivo/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Hidroxiprolina/análise , Interleucina-6/análise , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Bucal/citologia , Fibrose Oral Submucosa/etiologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Extratos Vegetais/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Smad/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-1/efeitos dos fármacos , Inibidor Tecidual de Metaloproteinase-2/efeitos dos fármacos , Fator de Crescimento Transformador beta1/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos
9.
Fish Physiol Biochem ; 40(3): 763-71, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24178924

RESUMO

In the present study, konjac mannanoligosaccharide (KMOS) was evaluated as a prebiotic in yellow catfish. The fish were fed with diets containing KMOS in four concentrations: 0 g kg(-1) (C), 1.0 g kg(-1) (KM1), 2.0 g kg(-1) (KM2), and 3.0 g kg(-1) (KM3) for 49 days, respectively. Another group fed with diets containing 3.0 g kg(-1) yeast cell wall mannanoligosaccharide (MOS) (M3) was set as positive control. The results indicated that fish receiving the diets supplemented with KMOS or MOS showed higher relative gain rate (RGR), specific growth rate (SGR), and lower feed conversion ratio (FCR) with significantly differences (P < 0.05) than those fed with the basal diets. Moreover, fish receiving the diets with 2.0 g kg(-1) KMOS inclusion showed higher RGR, SGR, and lower FCR (P < 0.05) than that feeding the diets supplemented with 3.0 g kg(-1) MOS. The quantities of Bifidobacterium spp. were significantly increased (P < 0.05). Meanwhile, Escherichia coli and Aeromonas spp. were significantly reduced (P < 0.05) in the fish-feeding diets with 2.0 g kg(-1) KMOS supplement. Compared with the control group, the significantly enhancement of protease and amylase activity (P < 0.05) in intestine and pancreas was observed in fish fed with diets containing KMOS or MOS. Collectively, an optimum level of KMOS inclusion in diets could modulate intestinal microflora, induce digestive enzyme activity, and improve the growth performance of yellow catfish significantly.


Assuntos
Peixes-Gato/crescimento & desenvolvimento , Digestão , Intestinos/microbiologia , Mananas , Prebióticos , Amorphophallus , Animais , Aquicultura , Peixes-Gato/metabolismo , Peixes-Gato/microbiologia , Intestinos/enzimologia
10.
Antimicrob Agents Chemother ; 57(9): 4433-43, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23836164

RESUMO

It has been reported that autophagy is involved in the replication of many viruses. In this study, we screened 89 medicinal plants, using an assay based on the inhibition of the formation of the Atg12-Atg5/Atg16 heterotrimer, an important regulator of autophagy, and selected Silybum marianum L. for further study. An antiviral assay indicated that silybin (S0), the major active compound of S. marianum L., can inhibit influenza A virus (IAV) infection. We later synthesized 5 silybin derivatives (S1 through S5) and found that 23-(S)-2-amino-3-phenylpropanoyl-silybin (S3) had the best activity. When we compared the polarities of the substituent groups, we found that the hydrophobicity of the substituent groups was positively correlated with their activities. We further studied the mechanisms of action of these compounds and determined that S0 and S3 also inhibited both the formation of the Atg12-Atg5/Atg16 heterotrimer and the elevated autophagy induced by IAV infection. In addition, we found that S0 and S3 could inhibit several components induced by IAV infection, including oxidative stress, the activation of extracellular signal-regulated kinase (ERK)/p38 mitogen-activated protein kinase (MAPK) and IκB kinase (IKK) pathways, and the expression of autophagic genes, especially Atg7 and Atg3. All of these components have been reported to be related to the formation of the Atg12-Atg5/Atg16 heterotrimer, which might validate our screening strategy. Finally, we demonstrated that S3 can significantly reduce influenza virus replication and the associated mortality in infected mice. In conclusion, we identified 23-(S)-2-amino-3-phenylpropanoyl-silybin as a promising inhibitor of IAV infection.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Extratos Vegetais/química , Silybum marianum/química , Silimarina/análogos & derivados , Animais , Antivirais/síntese química , Antivirais/isolamento & purificação , Autofagia/efeitos dos fármacos , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Cães , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Células Madin Darby de Rim Canino , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Plasmídeos , Multimerização Proteica/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Silimarina/síntese química , Silimarina/isolamento & purificação , Silimarina/farmacologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Células Vero
11.
Fish Physiol Biochem ; 39(2): 181-90, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22791194

RESUMO

The effect of dietary intake of Coriolus versicolor Polysaccharides (CVP) on the hematological and biochemical indices of Allogynogenetic crucian carp (Carassius auratus gibelio) was investigated. Fish were fed CVP supplemented diets (0, 0.25, 0.5, 1.0, 2.0 or 4.0 g CVP kg(-1)) for 56 days. The RBC, WBC counts, hemoglobin content, ESR in blood and TP, ALT, AST, ALP, GLU, CHO, TG, and BUN in serum were measured on day 0, 14, 28, 42, and 56. After feeding of 56 days, fish were infected with Aeromonas hydrophila and mortalities were recorded. The results indicated that feeding crucian carp with suitable dose of CVP enhanced the RBC, WBC counts, hemoglobin and TP content, ALP activity, and decreased the ESR, ALT, AST, GLU, CHO, TG and BUN. There was no effect in fish at low dose (0.25 g kg(-1)). Unexpectedly, the higher CVP dose used here (2.0 and 4.0 g kg(-1)) has a negative effect in fish. The results of challenge experiment indicated that a moderate level of CVP in the diet (1.0 g kg(-1)) was the most effective to enhance the survival of fish after infected with A. hydrophila. In summary, the use of CVP, as dietary supplements, can improve the innate defense of crucian carp providing resistance to pathogens.


Assuntos
Aeromonas hydrophila/imunologia , Carpas , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Polissacarídeos Fúngicos/farmacologia , Infecções por Bactérias Gram-Negativas/veterinária , Trametes/química , Animais , Aquicultura/métodos , Contagem de Células Sanguíneas/veterinária , Análise Química do Sangue/veterinária , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Infecções por Bactérias Gram-Negativas/prevenção & controle , Hemoglobinas/análise
12.
Theranostics ; 13(12): 4288-4302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554285

RESUMO

Rationale: As a key endogenous negative regulator of ferroptosis, glutathione peroxidase 4 (GPX4) can regulate its antioxidant function through multiple post-translational modification pathways. However, the effects of the phosphorylation/dephosphorylation status of GPX4 on the regulation of inducible ferroptosis in hepatocellular carcinoma (HCC) remain unclear. Methods: To investigate the effects and molecular mechanism of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells. Sorafenib (Sora) was used to establish the ferroptosis model in HCC cells in vitro. Using the site-directed mutagenesis method, we generated the mimic GPX4 phosphorylation or dephosphorylation HCC cell lines at specific serine sites of GPX4. The effects of GPX4 phosphorylation/dephosphorylation modification on ferroptosis in HCC cells were examined. The interrelationships among GPX4, p53, and protein phosphatase 2A-B55ß subunit (PP2A-B55ß) were also explored. To explore the synergistic anti-tumor effects of PP2A activation on Sora-administered HCC, we established PP2A-B55ß overexpression xenograft tumors in a nude mice model in vivo. Results: In the Sora-induced ferroptosis model of HCC in vitro, decreased levels of cytoplasmic and mitochondrial GPX4, mitochondrial dysfunction, and enhanced p53 retrograde signaling occurred under Sora treatment. Further, we found that mitochondrial p53 retrograded remarkably into the nucleus and aggravated Sora-induced ferroptosis. The phosphorylation status of GPX4 at the serine 2 site (GPX4Ser2) revealed that mitochondrial p-GPX4Ser2 dephosphorylation was positively associated with ferroptosis, and the mechanism might be related to mitochondrial p53 retrograding into the nucleus. In HCC cells overexpressing PP2A-B55ß, it was found that PP2A-B55ß directly interacted with mitochondrial GPX4 and promoted Sora-induced ferroptosis in HCC. Further, PP2A-B55ß reduced the interaction between mitochondrial GPX4 and p53, leading to mitochondrial p53 retrograding into the nucleus. Moreover, it was confirmed that PP2A-B55ß enhanced the ferroptosis-mediated tumor growth inhibition and mitochondrial p53 retrograde signaling in the Sora-treated HCC xenograft tumors. Conclusion: Our data uncovered that the PP2A-B55ß/p-GPX4Ser2/p53 axis was a novel regulatory pathway of Sora-induced ferroptosis. Mitochondrial p-GPX4Ser2 dephosphorylation triggered ferroptosis via inducing mitochondrial p53 retrograding into the nucleus, and PP2A-B55ß was an upstream signal modulator responsible for mitochondrial p-GPX4Ser2 dephosphorylation. Our findings might serve as a potential theranostic strategy to enhance the efficacy of Sora in HCC treatment through the targeted intervention of p-GPX4 dephosphorylation via PP2A-B55ß activation.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteína Fosfatase 2 , Sorafenibe , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Núcleo Celular , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/patologia , Transplante de Neoplasias , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/uso terapêutico , Proteína Fosfatase 2/metabolismo
13.
Artigo em Chinês | MEDLINE | ID: mdl-23256994

RESUMO

OBJECTIVE: To study the expression of A-kinase anchor protein 95 (AKAP95), cyclin E(2), and connexin 43 (Cx43) in lung cancer tissue, the clinical significance of their expression, and the expression correlation among the three proteins. METHODS: Fifty-one samples of lung cancer tissue were examined by immunohistochemistry to measure the expression of AKAP95, cyclin E2, and Cx43. RESULTS: The positive rate of AKAP95 expression in lung cancer tissue was significantly higher than that in paracancerous tissue (82.35% vs 33.33%, P < 0.05); AKAP95 expression was associated with the cell differentiation and histopathological type of lung cancer (P < 0.05). The positive rate of cyclin E(2) expression in lung cancer tissue was significantly higher than that in paracancerous tissue (43.14% vs 13.33%, P < 0.05); cyclin E(2) expression was associated with the lymph node metastasis and histopathological type of lung cancer (P < 0.05). The positive rate of Cx43 expression in lung cancer tissue was lower than that in paracancerous tissue (60.78% vs 80.00%); Cx43 expression was associated with the cell differentiation, lymph node metastasis, and histopathological type of lung cancer (P < 0.05). There was correlation between each two of AKAP95 expression, cyclin E(2) expression, and Cx43 expression in lung cancer tissue. CONCLUSION: High expression of AKAP95 and cyclin E(2) plays an important role in the occurrence and development of lung cancer. AKAP95 expression is associated with the cell differentiation and histopathological type of lung cancer, and cyclin E2 expression is associated with lymph node metastasis and histopathological type. There is correlation between each two of AKAP95 expression, cyclin E(2) expression, and Cx43 expression in lung cancer tissue.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Conexina 43/metabolismo , Ciclinas/metabolismo , Neoplasias Pulmonares/metabolismo , Adulto , Idoso , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade
14.
Huan Jing Ke Xue ; 43(9): 4608-4615, 2022 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-36096601

RESUMO

Actual pharmaceutical wastewater was pretreated with ozone microbubbles and compared with the treatment processes of nitrogen microbubbles, ozone common bubbles, and nitrogen common bubbles. The removal process and performance of suspended solids (SS) and organic compounds were investigated. The results showed that ozone microbubble treatment with strong adsorption-flotation-oxidation effects could enhance SS removal significantly, and the corresponding SS removal efficiency reached 81.67% at 60 min. The SS particle size was reduced, and the negative charge on the SS surface was simultaneously changed into a positive charge. Microbubble ozonation with a strong·OH oxidation effect also significantly enhanced the degradation and removal of organic compounds. The removal efficiency of soluble COD (SCOD) reached 36.60% at 60 min, and the SCOD removal was accelerated after the SS removal. The removal efficiency of UV254 also reached 36.91%. The biodegradability was improved, and the biological toxicity was obviously eliminated. The analysis of three-dimensional fluorescence and GC-MS showed that the macromolecular organic compounds with complex structure could be oxidized and decomposed efficiently with microbubble ozonation, resulting in the aromatic reduction in organic compounds in wastewater. Therefore, microbubble ozonation could be considered as an efficient and feasible pretreatment method for high concentration and refractory pharmaceutical wastewater.


Assuntos
Ozônio , Águas Residuárias , Microbolhas , Nitrogênio , Compostos Orgânicos , Ozônio/química , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
15.
Cell Prolif ; 55(11): e13304, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35811356

RESUMO

OBJECTIVES: Hepatitis B virus X (HBx) is closely associated with HBV-related hepatocarcinogenesis via the inactivation of tumour suppressors. Protein phosphatase 2A (PP2A) regulatory subunit B56 gamma (B56γ), as a tumour suppressor, plays a critical role in regulating cellular phosphorylation signals via dephosphorylation of signalling proteins. However, the underlying mechanism that B56γ involved in regulating HBx-associated hepatocarcinogenesis phenotypes and mediating anti-HBx antibody-mediated tumour suppression remains unknown. MATERIALS AND METHODS: We used bioinformatics analysis, paired HCC patient specimens, HBx transgenic (HBx-Tg) mice, xenograft nude mice, HBV stable replication in the HepG2.2.15 cells, and anti-HBx antibody intervention to systematically evaluate the biological function of protein kinase B (AKT) dephosphorylation through B56γ in HBx-associated hepatocarcinogenesis. RESULTS: Bioinformatics analysis revealed that AKT, matrix metalloproteinase 2 (MMP2), and MMP9 were markedly upregulated, while cell migration and viral carcinogenesis pathways were activated in HBV-infected liver tissues and HBV-associated HCC tissues. Our results demonstrated that HBx-expression promotes AKT phosphorylation (p-AKTThr308/Ser473 ), mediating the migration and invasion phenotypes in vivo and in vitro. Importantly, in clinical samples, HBx and B56γ were downregulated in HBV-associated HCC tumour tissues compared with peritumor tissues. Moreover, intervention with site-directed mutagenesis (AKTT308A , AKTS473A ) of p-AKTThr308/Ser473 mimics dephosphorylation, genetics-based B56γ overexpression, and intracellular anti-HBx antibody inhibited cell growth, migration, and invasion in HBx-expressing HCC cells. CONCLUSIONS: Our results demonstrated that B56γ inhibited HBV/HBx-dependent hepatocarcinogenesis by regulating the dephosphorylation of p-AKTThr308/Ser473 in HCC cells. The intracellular anti-HBx antibody and the activator of B56γ may provide a multipattern chemopreventive strategy against HBV-related HCC.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Metaloproteinase 2 da Matriz/metabolismo , Proteína Fosfatase 2/metabolismo , Camundongos Nus , Carcinogênese/genética , Hepatite B/complicações , Hepatite B/genética , Hepatite B/metabolismo
16.
Cancers (Basel) ; 14(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35159089

RESUMO

Mitochondria are highly dynamic organelles and undergo constant fission and fusion, which are both essential for the maintenance of cell physiological functions. Dysregulation of dynamin-related protein 1 (Drp1)-dependent mitochondrial dynamics is associated with tumorigenesis and the chemotherapeutic response in hepatocellular carcinoma (HCC). The enzyme cyclooxygenase-2 (COX-2) is overexpressed in most cancer types and correlates with a poor prognosis. However, the roles played by the translocation of mitochondrial COX-2 (mito-COX-2) and the interaction between mito-COX-2 and Drp1 in chemotherapeutic responses remain to be elucidated in the context of HCC. Bioinformatics analysis, paired HCC patient specimens, xenograft nude mice, immunofluorescence, transmission electron microscopy, molecular docking, CRISPR/Cas9 gene editing, proximity ligation assay, cytoplasmic and mitochondrial fractions, mitochondrial immunoprecipitation assay, and flow cytometry analysis were performed to evaluate the underlying mechanism of how mito-COX-2 and p-Drp1Ser616 interaction regulates the chemotherapeutic response via mitochondrial dynamics in vitro and in vivo. We found that COX-2 and Drp1 were frequently upregulated and confer a poor prognosis in HCC. We also found that the proportion of mito-COX-2 and p-Drp1Ser616 was increased in HCC cell lines. In vitro, we demonstrated that the enhanced mitochondrial translocation of COX-2 promotes its interaction with p-Drp1Ser616 via PTEN-induced putative kinase 1 (PINK1)-mediated Drp1 phosphorylation activation. This increase was associated with higher colony formation, cell proliferation, and mitochondrial fission. These findings were confirmed by knocking down COX-2 in HCC cells using CRISPR/Cas9 technology. Furthermore, inhibition of Drp1 using pharmacologic inhibitors (Mdivi-1) or RNA interference (siDNM1L) decreased mito-COX-2/p-Drp1Ser616 interaction-mediated mitochondrial fission, and increased apoptosis in HCC cells treated with platinum drugs. Moreover, inhibiting mito-COX-2 acetylation with the natural phytochemical resveratrol resulted in reducing cell proliferation and mitochondrial fission, occurring through upregulation of mitochondrial deacetylase sirtuin 3 (SIRT3), which, in turn, increased the chemosensitivity of HCC to platinum drugs in vitro and in vivo. Our results suggest that targeting interventions to PINK1-mediated mito-COX-2/p-Drp1Ser616-dependent mitochondrial dynamics increases the chemosensitivity of HCC and might help us to understand how to use the SIRT3-modulated mito-COX-2/p-Drp1Ser616 signaling axis to develop an effective clinical intervention in hepatocarcinogenesis.

17.
Biochem Pharmacol ; 189: 114192, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32783891

RESUMO

Exposure to toxic metal contaminants, such as cadmium compounds (Cd2+), has been shown to induce adverse effects on various organs and tissues. In particular, blood vessels are severely impacted by Cd2+ exposure, which may lead to cardiovascular diseases (CVDs). According to previous studies, CVDs are associated with increased cyclooxygenase 2 (COX-2) levels. However, the mechanisms by which CdCl2-induced COX-2 overexpression leads to cardiovascular dysfunction remain unclear. Herein, we show that the relative gene expressions of VEGF and PTGS2 (COX-2 encoding gene) are positively correlated in CVDs patients. Moreover, we demonstrate that the in vitro administration of CdCl2 induces cytotoxicity and endoplasmic reticulum (ER) stress in primary human umbilical vein endothelial cells (HUVECs). The induction of ER stress and the overexpression of COX-2 in CdCl2-treated cells alters the protein level of vascular endothelial growth factor (VEGF), resulting in abnormal angiogenesis and increased cytotoxicity. At the pre-transcription level, the inhibition of ER stress by siGRP78 (a key mediator of ER stress) can restore normal angiogenesis in the CdCl2-exposed cells. Meanwhile, at the transcription level, the adverse effects of CdCl2 exposure may be reversed via genetic modification with siRNA (siPTGS2) or by using phytochemical inhibitors (parthenolide, PN) of COX-2. Finally, at the post-transcription level, COX-2 expression may be restricted by the binding of microRNA-101 (miR-101) to the 3'-UTR of PTGS2 mRNA. The use of mimic miR-101 (mi101) to induce the expression of miR-101 eventually leads to reduced COX-2 protein levels, relieved ER stress, and less abnormal angiogenesis and cytotoxicity of CdCl2-exposed primary HUVECs. Overall, our results suggest that CdCl2-induced abnormal angiogenesis is mediated by miR-101/COX-2/VEGF-axis-dependent ER stress, and that cardiovascular dysfunction may be controlled by manipulating COX-2 at the pre-transcription, transcription, and post-transcription levels.


Assuntos
Indutores da Angiogênese/toxicidade , Cloreto de Cádmio/toxicidade , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , MicroRNAs/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos
18.
Front Med (Lausanne) ; 8: 591830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33768100

RESUMO

At the time of the prevalence of coronavirus disease 2019 (COVID-19), pulmonary fibrosis (PF) related to COVID-19 has become the main sequela. However, the mechanism of PF related to COVID (COVID-PF) is unknown. This study aimed to explore the key targets in the development of COVID-PF and the mechanism of d-limonene in the COVID-PF treatment. The differentially expressed genes of COVID-PF were downloaded from the GeneCards database, and their pathways were analyzed. d-Limonene was molecularly docked with related proteins to screen its pharmacological targets, and a rat lung fibrosis model was established to verify d-limonene's effect on COVID-PF-related targets. The results showed that the imbalance between collagen breakdown and metabolism, inflammatory response, and angiogenesis are the core processes of COVID-PF; and PI3K/AKT signaling pathways are the key targets of the treatment of COVID-PF. The ability of d-limonene to protect against PF induced by bleomycin in rats was reported. The mechanism is related to the binding of PI3K and NF-κB p65, and the inhibition of PI3K/Akt/IKK-α/NF-κB p65 signaling pathway expression and phosphorylation. These results confirmed the relationship between the PI3K-Akt signaling pathway and COVID-PF, showing that d-limonene has a potential therapeutic value for COVID-PF.

19.
Virol J ; 7: 170, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20653952

RESUMO

Phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway can support the replication of influenza A virus through binding of viral NS1 protein to the Src homology 3 (SH3) domain of p85beta regulatory subunit of PI3K. Here we investigated the effect of heterologously overexpressed SH3 on the replication of different influenza A virus subtypes/strains, and on the phosphorylation of Akt in the virus-infected cells. We found that heterologous SH3 reduced replication of influenza A viruses at varying degrees in a subtype/strain-dependent manner and SH3 overexpression reduced the induction of the phosphorylation of Akt in the cells infected with PR8(H1N1) and ST364(H3N2), but not with ST1233(H1N1), Ph2246(H9N2), and Qa199(H9N2). Our results suggest that interference with the NS1-p85beta interaction by heterologous SH3 can be served as a useful antiviral strategy against influenza A virus infection.


Assuntos
Regulação para Baixo , Vírus da Influenza A/fisiologia , Influenza Humana/enzimologia , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Replicação Viral , Animais , Linhagem Celular , Cães , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/virologia , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Domínios de Homologia de src
20.
Huan Jing Ke Xue ; 41(4): 1752-1760, 2020 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608682

RESUMO

The treatment performance of microbubble ozonation used for advanced treatment of actual pharmaceutical wastewater and tannery wastewater was investigated and compared to show the influence of complicated wastewater quality. The results showed that most organic pollutants in pharmaceutical wastewater and tannery wastewater could be degraded by microbubble ozonation effectively. and COD was removed simultaneously. In addition, the biodegradability was improved and the bio-toxicity was eliminated significantly. The ratios of COD amount removed and ozone amount consumed were 0.77 and 1.02, respectively, in such advanced treatment of pharmaceutical wastewater and tannery wastewater, indicating different ozone oxidation efficiencies between pharmaceutical wastewater and tannery wastewater. The main types of organic pollutants in pharmaceutical wastewater and tannery wastewater were determined by GC-MS and 3D-EEM, which showed the influence on treatment performance of microbubble ozonation. More refractory complex aromatic organic pollutants were found in pharmaceutical wastewater, which seemed more difficult to undergo degradation by microbubble ozone oxidation. As a result, the microbubble ozone oxidation of pharmaceutical wastewater was less efficient than that of tannery wastewater. The inorganic anions in both kinds of wastewater were unfavorable for ozone mass transfer, ozone decomposition, and·OH generation, which reduced the reaction efficiency of microbubble ozonation as well as biodegradability improvement. The lower concentrations of inorganic anions were better for microbubble ozonation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA