Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Circ Res ; 134(4): 393-410, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38275112

RESUMO

BACKGROUND: The sympathoadrenergic system and its major effector PKA (protein kinase A) are activated to maintain cardiac output coping with physiological or pathological stressors. If and how PKA plays a role in physiological cardiac hypertrophy (PhCH) and pathological CH (PaCH) are not clear. METHODS: Transgenic mouse models expressing the PKA inhibition domain (PKAi) of PKA inhibition peptide alpha (PKIalpha)-green fluorescence protein (GFP) fusion protein (PKAi-GFP) in a cardiac-specific and inducible manner (cPKAi) were used to determine the roles of PKA in physiological CH during postnatal growth or induced by swimming, and in PaCH induced by transaortic constriction (TAC) or augmented Ca2+ influx. Kinase profiling was used to determine cPKAi specificity. Echocardiography was used to determine cardiac morphology and function. Western blotting and immunostaining were used to measure protein abundance and phosphorylation. Protein synthesis was assessed by puromycin incorporation and protein degradation by measuring protein ubiquitination and proteasome activity. Neonatal rat cardiomyocytes (NRCMs) infected with AdGFP (GFP adenovirus) or AdPKAi-GFP (PKAi-GFP adenovirus) were used to determine the effects and mechanisms of cPKAi on myocyte hypertrophy. rAAV9.PKAi-GFP was used to treat TAC mice. RESULTS: (1) cPKAi delayed postnatal cardiac growth and blunted exercise-induced PhCH; (2) PKA was activated in hearts after TAC due to activated sympathoadrenergic system, the loss of endogenous PKIα (PKA inhibition peptide α), and the stimulation by noncanonical PKA activators; (3) cPKAi ameliorated PaCH induced by TAC and increased Ca2+ influxes and blunted neonatal rat cardiomyocyte hypertrophy by isoproterenol and phenylephrine; (4) cPKAi prevented TAC-induced protein synthesis by inhibiting mTOR (mammalian target of rapamycin) signaling through reducing Akt (protein kinase B) activity, but enhancing inhibitory GSK-3α (glycogen synthase kinase-3α) and GSK-3ß signals; (5) cPKAi reduced protein degradation by the ubiquitin-proteasome system via decreasing RPN6 phosphorylation; (6) cPKAi increased the expression of antihypertrophic atrial natriuretic peptide (ANP); (7) cPKAi ameliorated established PaCH and improved animal survival. CONCLUSIONS: Cardiomyocyte PKA is a master regulator of PhCH and PaCH through regulating protein synthesis and degradation. cPKAi can be a novel approach to treat PaCH.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Complexo de Endopeptidases do Proteassoma , Camundongos , Ratos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Camundongos Transgênicos , Peptídeos/metabolismo , Mamíferos
2.
Appl Environ Microbiol ; 90(3): e0211023, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38391210

RESUMO

Ultraviolet (UV) A radiation (315-400 nm) is the predominant component of solar UV radiation that reaches the Earth's surface. However, the underlying mechanisms of the positive effects of UV-A on photosynthetic organisms have not yet been elucidated. In this study, we investigated the effects of UV-A radiation on the growth, photosynthetic ability, and metabolome of the edible cyanobacterium Nostoc sphaeroides. Exposures to 5-15 W m-2 (15-46 µmol photons m-2 s-1) UV-A and 4.35 W m-2 (20 µmol photons m-2 s-1) visible light for 16 days significantly increased the growth rate and biomass production of N. sphaeroides cells by 18%-30% and 15%-56%, respectively, compared to the non-UV-A-acclimated cells. Additionally, the UV-A-acclimated cells exhibited a 1.8-fold increase in the cellular nicotinamide adenine dinucleotide phosphate (NADP) pool with an increase in photosynthetic capacity (58%), photosynthetic efficiency (24%), QA re-oxidation, photosystem I abundance, and cyclic electron flow (87%), which further led to an increase in light-induced NADPH generation (31%) and ATP content (83%). Moreover, the UV-A-acclimated cells showed a 2.3-fold increase in ribulose-1,5-bisphosphate carboxylase/oxygenase activity, indicating an increase in their carbon-fixing capacity. Gas chromatography-mass spectrometry-based metabolomics further revealed that UV-A radiation upregulated the energy-storing carbon metabolism, as evidenced by the enhanced accumulation of sugars, fatty acids, and citrate in the UV-A-acclimated cells. Therefore, our results demonstrate that UV-A radiation enhances energy flow and carbon assimilation in the cyanobacterium N. sphaeroides.IMPORTANCEUltraviolet (UV) radiation exerts harmful effects on photo-autotrophs; however, several studies demonstrated the positive effects of UV radiation, especially UV-A radiation (315-400 nm), on primary productivity. Therefore, understanding the underlying mechanisms associated with the promotive effects of UV-A radiation on primary productivity can facilitate the application of UV-A for CO2 sequestration and lead to the advancement of photobiological sciences. In this study, we used the cyanobacterium Nostoc sphaeroides, which has an over 1,700-year history of human use as food and medicine, to explore its photosynthetic acclimation response to UV-A radiation. As per our knowledge, this is the first study to demonstrate that UV-A radiation increases the biomass yield of N. sphaeroides by enhancing energy flow and carbon assimilation. Our findings provide novel insights into UV-A-mediated photosynthetic acclimation and provide a scientific basis for the application of UV-A radiation for optimizing light absorption capacity and enhancing CO2 sequestration in the frame of a future CO2 neutral, circular, and sustainable bioeconomy.


Assuntos
Nostoc , Raios Ultravioleta , Humanos , Biomassa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Nostoc/metabolismo , Fotossíntese/fisiologia
3.
Am J Physiol Heart Circ Physiol ; 324(4): H443-H460, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36763506

RESUMO

Heart failure (HF) with preserved ejection fraction (HFpEF) is defined as HF with an ejection fraction (EF) ≥ 50% and elevated cardiac diastolic filling pressures. The underlying causes of HFpEF are multifactorial and not well-defined. A transgenic mouse with low levels of cardiomyocyte (CM)-specific inducible Cavß2a expression (ß2a-Tg mice) showed increased cytosolic CM Ca2+, and modest levels of CM hypertrophy, and fibrosis. This study aimed to determine if ß2a-Tg mice develop an HFpEF phenotype when challenged with two additional stressors, high-fat diet (HFD) and Nω-nitro-l-arginine methyl ester (l-NAME, LN). Four-month-old wild-type (WT) and ß2a-Tg mice were given either normal chow (WT-N, ß2a-N) or HFD and/or l-NAME (WT-HFD, WT-LN, WT-HFD-LN, ß2a-HFD, ß2a-LN, and ß2a-HFD-LN). Some animals were treated with the histone deacetylase (HDAC) (hypertrophy regulators) inhibitor suberoylanilide hydroxamic acid (SAHA) (ß2a-HFD-LN-SAHA). Echocardiography was performed monthly. After 4 mo of treatment, terminal studies were performed including invasive hemodynamics and organs weight measurements. Cardiac tissue was collected. Four months of HFD plus l-NAME treatment did not induce a profound HFpEF phenotype in FVB WT mice. ß2a-HFD-LN (3-Hit) mice developed features of HFpEF, including increased atrial natriuretic peptide (ANP) levels, preserved EF, diastolic dysfunction, robust CM hypertrophy, increased M2-macrophage population, and myocardial fibrosis. SAHA reduced the HFpEF phenotype in the 3-Hit mouse model, by attenuating these effects. The 3-Hit mouse model induced a reliable HFpEF phenotype with CM hypertrophy, cardiac fibrosis, and increased M2-macrophage population. This model could be used for identifying and preclinical testing of novel therapeutic strategies.NEW & NOTEWORTHY Our study shows that three independent pathological stressors (increased Ca2+ influx, high-fat diet, and l-NAME) together produce a profound HFpEF phenotype. The primary mechanisms include HDAC-dependent-CM hypertrophy, necrosis, increased M2-macrophage population, fibroblast activation, and myocardial fibrosis. A role for HDAC activation in the HFpEF phenotype was shown in studies with SAHA treatment, which prevented the severe HFpEF phenotype. This "3-Hit" mouse model could be helpful in identifying novel therapeutic strategies to treat HFpEF.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Camundongos , Animais , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/tratamento farmacológico , Volume Sistólico/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Camundongos Transgênicos , Fibrose , Fenótipo , Hipertrofia
4.
Am J Physiol Heart Circ Physiol ; 325(4): H702-H719, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37539452

RESUMO

Maternal hypothyroidism (MH) could adversely affect the cardiac disease responses of the progeny. This study tested the hypothesis that MH reduces early postnatal cardiomyocyte (CM) proliferation so that the adult heart of MH progeny has a smaller number of larger cardiac myocytes, which imparts adverse cardiac disease responses following injury. Thyroidectomy (TX) was used to establish MH. The progeny from mice that underwent sham or TX surgery were termed Ctrl (control) or MH (maternal hypothyroidism) progeny, respectively. MH progeny had similar heart weight (HW) to body weight (BW) ratios and larger CM size consistent with fewer CMs at postnatal day 60 (P60) compared with Ctrl (control) progeny. MH progeny had lower numbers of EdU+, Ki67+, and phosphorylated histone H3 (PH3)+ CMs, which suggests they had a decreased CM proliferation in the postnatal timeframe. RNA-seq data showed that genes related to DNA replication were downregulated in P5 MH hearts, including bone morphogenetic protein 10 (Bmp10). Both in vivo and in vitro studies showed Bmp10 treatment increased CM proliferation. After transverse aortic constriction (TAC), the MH progeny had more severe cardiac pathological remodeling compared with the Ctrl progeny. Thyroid hormone (T4) treatment for MH mothers preserved their progeny's postnatal CM proliferation capacity and prevented excessive pathological remodeling after TAC. Our results suggest that CM proliferation during early postnatal development was significantly reduced in MH progeny, resulting in fewer CMs with hypertrophy in adulthood. These changes were associated with more severe cardiac disease responses after pressure overload.NEW & NOTEWORTHY Our study shows that compared with Ctrl (control) progeny, the adult progeny of mothers who have MH (MH progeny) had fewer CMs. This reduction of CM numbers was associated with decreased postnatal CM proliferation. Gene expression studies showed a reduced expression of Bmp10 in MH progeny. Bmp10 has been linked to myocyte proliferation. In vivo and in vitro studies showed that Bmp10 treatment of MH progeny and their myocytes could increase CM proliferation. Differences in CM number and size in adult hearts of MH progeny were linked to more severe cardiac structural and functional remodeling after pressure overload. T4 (synthetic thyroxine) treatment of MH mothers during their pregnancy, prevented the reduction in CM number in their progeny and the adverse response to disease stress.


Assuntos
Cardiopatias , Hipotireoidismo , Gravidez , Feminino , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiopatias/patologia , Hipertrofia/metabolismo , Hipertrofia/patologia , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Hipotireoidismo/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Cardiomegalia/metabolismo
5.
Circ Res ; 128(1): 92-114, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33092464

RESUMO

RATIONALE: Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE: To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS: Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after ß-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS: The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Gatos , Células Cultivadas , Modelos Animais de Doenças , Acoplamento Excitação-Contração , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Cinética , Masculino , Proteínas de Membrana/genética , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Proteínas Musculares/genética , Mutação , Miócitos Cardíacos/patologia , Biogênese de Organelas , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina
6.
Nature ; 545(7652): 93-97, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445457

RESUMO

Mitochondrial calcium (mCa2+) has a central role in both metabolic regulation and cell death signalling, however its role in homeostatic function and disease is controversial. Slc8b1 encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), which is proposed to be the primary mechanism for mCa2+ extrusion in excitable cells. Here we show that tamoxifen-induced deletion of Slc8b1 in adult mouse hearts causes sudden death, with less than 13% of affected mice surviving after 14 days. Lethality correlated with severe myocardial dysfunction and fulminant heart failure. Mechanistically, cardiac pathology was attributed to mCa2+ overload driving increased generation of superoxide and necrotic cell death, which was rescued by genetic inhibition of mitochondrial permeability transition pore activation. Corroborating these findings, overexpression of NCLX in the mouse heart by conditional transgenesis had the beneficial effect of augmenting mCa2+ clearance, preventing permeability transition and protecting against ischaemia-induced cardiomyocyte necrosis and heart failure. These results demonstrate the essential nature of mCa2+ efflux in cellular function and suggest that augmenting mCa2+ efflux may be a viable therapeutic strategy in disease.


Assuntos
Cálcio/metabolismo , Homeostase , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Sobrevivência Celular , Morte Súbita , Feminino , Deleção de Genes , Células HeLa , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Trocador de Sódio e Cálcio/genética , Superóxidos/metabolismo , Tamoxifeno/farmacologia , Remodelação Ventricular
7.
Echocardiography ; 39(8): 1064-1073, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35768937

RESUMO

BACKGROUND: The gender difference of the bicuspid aortic valve (BAV) is not well understood. OBJECTIVES: We evaluated the impact of gender on the Sievers types, valvulopathy, aortopathy, and outcomes of aortic valve replacement (AVR) of BAV patients in a cohort of Chinese patients. METHODS: Among 992 BAV patients without aortic dissection nor congenital heart disease, 658 underwent AVR. The demography, Sievers types, valvulopathy, aortopathy, and outcomes of AVR were compared between genders. RESULTS: Aortic regurgitation (AR ≥ 2+) (39.0% vs. 12.8%, p < .001), aortic root dilation only (3.8% vs. .8%, p = .014), and diffuse dilation (25.3% vs. 4.3%, p < .001) were more common in men, while moderate to severe aortic stenosis (AS) (21.3% vs. 45.7%, p < .001) and ascending dilation only (46.2% vs. 61.2%, p < .001) were more common in women. Men were more prone to develop preoperative AR ≥ 2+ (OR = 5.15, p < .001), moderate to severe AS + AR ≥ 2 + (OR = 2.95, p = .001), and Diffuse aortic dilation (OR = 3.91, p < .001). Sievers types did not have a significant effect on valvular dysfunction. Gender didn't predict early adverse events after AVR (n = 90) (HR = 1.21, p = .44), but male gender predicted a left ventricular ejection fraction <50% after AVR (OR = 3.07, p = .03). CONCLUSIONS: In this BAV series of Chinese patients, gender didn't differ significantly in Sievers types of BAV but showed significant differences in valvulopathy, aortopathy, and LV function after AVR. In addition, the male patients developed more severe conditions at a younger age.


Assuntos
Estenose da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Implante de Prótese de Valva Cardíaca , Valva Aórtica , Feminino , Humanos , Masculino , Estudos Retrospectivos , Fatores Sexuais , Volume Sistólico , Função Ventricular Esquerda
8.
Circ Res ; 124(12): 1760-1777, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-30982412

RESUMO

RATIONALE: PKA (Protein Kinase A) is a major mediator of ß-AR (ß-adrenergic) regulation of cardiac function, but other mediators have also been suggested. Reduced PKA basal activity and activation are linked to cardiac diseases. However, how complete loss of PKA activity impacts on cardiac physiology and if it causes cardiac dysfunction have never been determined. OBJECTIVES: We set to determine how the heart adapts to the loss of cardiomyocyte PKA activity and if it elicits cardiac abnormalities. METHODS AND RESULTS: (1) Cardiac PKA activity was almost completely inhibited by expressing a PKA inhibitor peptide in cardiomyocytes (cPKAi) in mice; (2) cPKAi reduced basal phosphorylation of 2 myofilament proteins (TnI [troponin I] and cardiac myosin binding protein C), and one longitudinal SR (sarcoplasmic reticulum) protein (PLB [phospholamban]) but not of the sarcolemmal proteins (Cav1.2 α1c and PLM [phospholemman]), dyadic protein RyR2, and nuclear protein CREB (cAMP response element binding protein) at their PKA phosphorylation sites; (3) cPKAi increased the expression of CaMKII (Ca2+/calmodulin-dependent kinase II), the Cav1.2 ß subunits and current, but decreased CaMKII phosphorylation and CaMKII-mediated phosphorylation of PLB and RyR2; (4) These changes resulted in significantly enhanced myofilament Ca2+ sensitivity, prolonged contraction, slowed relaxation but increased myocyte Ca2+ transient and contraction amplitudes; (5) Isoproterenol-induced PKA and CaMKII activation and their phosphorylation of proteins were prevented by cPKAi; (6) cPKAi abolished the increases of heart rate, and cardiac and myocyte contractility by a ß-AR agonist (isoproterenol), showing an important role of PKA and a minimal role of PKA-independent ß-AR signaling in acute cardiac regulation; (7) cPKAi mice have partial exercise capability probably by enhancing vascular constriction and ventricular filling during ß-AR stimulation; and (8) cPKAi mice did not show any cardiac functional or structural abnormalities during the 1-year study period. CONCLUSIONS: PKA activity suppression induces a unique Ca2+ handling phenotype, eliminates ß-AR regulation of heart rates and cardiac contractility but does not cause cardiac abnormalities.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
9.
Circ Res ; 121(2): 125-136, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592415

RESUMO

RATIONALE: Pathological increases in cardiac afterload result in myocyte hypertrophy with changes in myocyte electrical and mechanical phenotype. Remodeling of contractile and signaling Ca2+ occurs in pathological hypertrophy and is central to myocyte remodeling. STIM1 (stromal interaction molecule 1) regulates Ca2+ signaling in many cell types by sensing low endoplasmic reticular Ca2+ levels and then coupling to plasma membrane Orai channels to induce a Ca2+ influx pathway. Previous reports suggest that STIM1 may play a role in cardiac hypertrophy, but its role in electrical and mechanical phenotypic alterations is not well understood. OBJECTIVE: To define the contributions of STIM1-mediated Ca2+ influx on electrical and mechanical properties of normal and diseased myocytes, and to determine whether Orai channels are obligatory partners for STIM1 in these processes using a clinically relevant large animal model of hypertrophy. METHODS AND RESULTS: Cardiac hypertrophy was induced by slow progressive pressure overload in adult cats. Hypertrophied myocytes had increased STIM1 expression and activity, which correlated with altered Ca2+-handling and action potential (AP) prolongation. Exposure of hypertrophied myocytes to the Orai channel blocker BTP2 caused a reduction of AP duration and reduced diastolic Ca2+ spark rate. BTP2 had no effect on normal myocytes. Forced expression of STIM1 in cultured adult feline ventricular myocytes increased diastolic spark rate and prolonged AP duration. STIM1 expression produced an increase in the amount of Ca2+ stored within the sarcoplasmic reticulum and activated Ca2+/calmodulin-dependent protein kinase II. STIM1 expression also increased spark rates and induced spontaneous APs. STIM1 effects were eliminated by either BTP2 or by coexpression of a dominant negative Orai construct. CONCLUSIONS: STIM1 can associate with Orai in cardiac myocytes to produce a Ca2+ influx pathway that can prolong the AP duration and load the sarcoplasmic reticulum and likely contributes to the altered electromechanical properties of the hypertrophied heart.


Assuntos
Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Contração Miocárdica/fisiologia , Proteínas de Neoplasias/biossíntese , Molécula 1 de Interação Estromal/biossíntese , Potenciais de Ação/fisiologia , Animais , Gatos , Células Cultivadas , Masculino
10.
J Environ Qual ; 48(1): 136-146, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30640350

RESUMO

Macropores formed by roots are crucial channels for preferential flows in forest soils that are largely responsible for water percolation and solute leaching. Using dual-tracer experiments (Brilliant Blue FCF and bromide [Br]), this study investigated the preferential flows of water and solutes in a deciduous forest dominated by Bl. and a coniferous forest mainly planted with (L.) Franco. Dye-stained patterns and concentrations of Brilliant Blue and Br were obtained in vertical soil profiles (0-30 cm), whereas stained and unstained roots were collected and analyzed in horizontal soil profiles to a 30-cm soil depth. Brilliant Blue and Br were mainly accumulated in the 0- to 20-cm soil depth, which had greater total root length density than the 20- to 30-cm soil depth ( < 0.05). Only part of the roots facilitated the preferential flows, with finer roots (i.e., diameter <1 mm) contributing the most. More intriguingly, the coniferous forest soil had a greater degree of preferential flows and greater tracer concentrations at deeper soil depth than the deciduous forest soil, suggesting the importance of tree species and forest composition on water and solute transport in forest ecosystems.


Assuntos
Solo , Traqueófitas , Ecossistema , Florestas , Árvores
11.
J Physiol ; 596(18): 4413-4426, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099751

RESUMO

KEY POINTS: Referring to the muscle memory theory, previously trained muscles acquire strength and volume much faster than naive muscles. Using extreme experimental models such as synergist ablation or steroid administration, previous studies have demonstrated that the number of nuclei increases when a muscle becomes enlarged, which serves as a cellular muscle memory mechanism for the muscle. In the present study, we found that, when rats were subjected to physiologically relevant resistance training, the number of myonuclei increased and was retained during a long-term detraining period. The acquired myonuclei were related to a greater degree of muscle hypertrophic and mitochondrial biogenesis processes following subsequent hypertrophic conditions. Our data suggest a cellular mechanism supporting the notion that exposing young muscles to resistance training would help to restore age-related muscle loss coupled with mitochondrial dysfunction in later life. ABSTRACT: Muscle hypertrophy induced by resistance training is accompanied by an increase in the number of myonuclei. The acquired myonuclei are viewed as a cellular component of muscle memory by which muscle enlargement is promoted during a re-training period. In the present study, we investigated the effect of exercise preconditioning on mitochondrial remodelling induced by resistance training. Sprague-Dawley rats were divided into four groups: untrained control, training, pre-training or re-training. The training groups were subjected to weight loaded-ladder climbing exercise training. Myonuclear numbers were significantly greater (up to 20%) in all trained muscles compared to untrained controls. Muscle mass was significantly higher in the re-training group compared to the training group (∼2-fold increase). Mitochondrial content, mitochondrial biogenesis gene expression levels and mitochondrial DNA copy numbers were significantly higher in re-trained muscles compared to the others. Oxidative myofibres (type I) were significantly increased only in the re-trained muscles. Furthermore, in vitro studies using insulin-like growth factor-1-treated L6 rat myotubes demonstrated that myotubes with a higher myonuclear number confer greater expression levels of both mitochondrial and nuclear genes encoding for constitutive and regulatory mitochondrial proteins, which also showed a greater mitochondrial respiratory function. These data suggest that myonuclei acquired from previous training facilitate mitochondrial biogenesis in response to subsequent retraining by (at least in part) enhancing cross-talk between mitochondria and myonuclei in the pre-conditioned myofibres.


Assuntos
Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Biogênese de Organelas , Condicionamento Físico Animal , Animais , Núcleo Celular/metabolismo , DNA Mitocondrial/genética , Feminino , Fibras Musculares Esqueléticas/metabolismo , Força Muscular , Ratos , Ratos Sprague-Dawley
12.
J Physiol ; 596(7): 1137-1151, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29274077

RESUMO

KEY POINTS: Cav3.1 T-type Ca2+ channel current (ICa-T ) contributes to heart rate genesis but is not known to contribute to heart rate regulation by the sympathetic/ß-adrenergic system (SAS). We show that the loss of Cav3.1 makes the beating rates of the heart in vivo and perfused hearts ex vivo, as well as sinoatrial node cells, less sensitive to ß-adrenergic stimulation; it also renders less conduction acceleration through the atrioventricular node by ß-adrenergic stimulation. Increasing Cav3.1 in cardiomyocytes has the opposite effects. ICa-T in sinoatrial nodal cells can be upregulated by ß-adrenergic stimulation. The results of the present study add a new contribution to heart rate regulation by the SAS system and provide potential new mechanisms for the dysregulation of heart rate and conduction by the SAS in the heart. T-type Ca2+ channel can be a target for heart disease treatments that aim to slow down the heart rate ABSTRACT: Cav3.1 (α1G ) T-type Ca2+ channel (TTCC) is expressed in mouse sinoatrial node cells (SANCs) and atrioventricular (AV) nodal cells and contributes to heart rate (HR) genesis and AV conduction. However, its role in HR regulation and AV conduction acceleration by the ß-adrenergic system (SAS) is unclear. In the present study, L- (ICa-L ) and T-type (ICa-T ) Ca2+ currents were recorded in SANCs from Cav3.1 transgenic (TG) and knockout (KO), and control mice. ICa-T was absent in KO SANCs but enhanced in TG SANCs. In anaesthetized animals, different doses of isoproterenol (ISO) were infused via the jugular vein and the HR was recorded. The EC50 of the HR response to ISO was lower in TG mice but higher in KO mice, and the maximal percentage of HR increase by ISO was greater in TG mice but less in KO mice. In Langendorff-perfused hearts, ISO increased HR and shortened PR intervals to a greater extent in TG but to a less extent in KO hearts. KO SANCs had significantly slower spontaneous beating rates than control SANCs before and after ISO; TG SANCs had similar basal beating rates as control SANCs probably as a result of decreased ICa-L but a greater response to ISO than control SANCs. ICa-T in SANCs was significantly increased by ISO. ICa-T upregulation by ß-adrenergic stimulation contributes to HR and conduction regulation by the SAS. TTCC can be a target for slowing the HR.


Assuntos
Adrenérgicos/farmacologia , Arritmias Cardíacas/tratamento farmacológico , Canais de Cálcio Tipo T/fisiologia , Frequência Cardíaca/fisiologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Nó Sinoatrial/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Frequência Cardíaca/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais , Nó Sinoatrial/citologia , Nó Sinoatrial/efeitos dos fármacos
13.
Circulation ; 136(9): 834-848, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28642276

RESUMO

BACKGROUND: Adult mammalian hearts have a limited ability to generate new cardiomyocytes. Proliferation of existing adult cardiomyocytes (ACMs) is a potential source of new cardiomyocytes. Understanding the fundamental biology of ACM proliferation could be of great clinical significance for treating myocardial infarction (MI). We aim to understand the process and regulation of ACM proliferation and its role in new cardiomyocyte formation of post-MI mouse hearts. METHODS: ß-Actin-green fluorescent protein transgenic mice and fate-mapping Myh6-MerCreMer-tdTomato/lacZ mice were used to trace the fate of ACMs. In a coculture system with neonatal rat ventricular myocytes, ACM proliferation was documented with clear evidence of cytokinesis observed with time-lapse imaging. Cardiomyocyte proliferation in the adult mouse post-MI heart was detected by cell cycle markers and 5-ethynyl-2-deoxyuridine incorporation analysis. Echocardiography was used to measure cardiac function, and histology was performed to determine infarction size. RESULTS: In vitro, mononucleated and bi/multinucleated ACMs were able to proliferate at a similar rate (7.0%) in the coculture. Dedifferentiation proceeded ACM proliferation, which was followed by redifferentiation. Redifferentiation was essential to endow the daughter cells with cardiomyocyte contractile function. Intercellular propagation of Ca2+ from contracting neonatal rat ventricular myocytes into ACM daughter cells was required to activate the Ca2+-dependent calcineurin-nuclear factor of activated T-cell signaling pathway to induce ACM redifferentiation. The properties of neonatal rat ventricular myocyte Ca2+ transients influenced the rate of ACM redifferentiation. Hypoxia impaired the function of gap junctions by dephosphorylating its component protein connexin 43, the major mediator of intercellular Ca2+ propagation between cardiomyocytes, thereby impairing ACM redifferentiation. In vivo, ACM proliferation was found primarily in the MI border zone. An ischemia-resistant connexin 43 mutant enhanced the redifferentiation of ACM-derived new cardiomyocytes after MI and improved cardiac function. CONCLUSIONS: Mature ACMs can reenter the cell cycle and form new cardiomyocytes through a 3-step process: dedifferentiation, proliferation, and redifferentiation. Intercellular Ca2+ signal from neighboring functioning cardiomyocytes through gap junctions induces the redifferentiation process. This novel mechanism contributes to new cardiomyocyte formation in post-MI hearts in mammals.


Assuntos
Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Conexina 43/antagonistas & inibidores , Conexina 43/genética , Conexina 43/metabolismo , Citocinese , Ecocardiografia , Junções Comunicantes/metabolismo , Coração/diagnóstico por imagem , Humanos , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Interferência de RNA , Ratos , Transdução de Sinais , Troponina I/metabolismo
14.
Am J Physiol Heart Circ Physiol ; 313(3): H620-H630, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28646025

RESUMO

Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na+ and Ca2+ in the development of HCM, but the role of repolarizing K+ currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K+ currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K+ currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K+ channel subunits. In conclusion, decrease in repolarizing K+ currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility.NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K+ currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy.


Assuntos
Proteínas de Transporte/metabolismo , Frequência Cardíaca , Miócitos Cardíacos/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Taquicardia Ventricular/metabolismo , Complexos Ventriculares Prematuros/metabolismo , Potenciais de Ação , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Proteínas de Transporte/genética , Modelos Animais de Doenças , Eletrocardiografia Ambulatorial , Fibrose , Predisposição Genética para Doença , Cinética , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Fenótipo , Canais de Potássio/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Telemetria , Complexos Ventriculares Prematuros/genética , Complexos Ventriculares Prematuros/patologia , Complexos Ventriculares Prematuros/fisiopatologia
15.
Clin Sci (Lond) ; 131(24): 2919-2932, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29162747

RESUMO

After myocardial infarction (MI), the heart is difficult to repair because of great loss of cardiomyoctyes and lack of cardiac regeneration. Novel drug candidates that aim at reducing pathological remodeling and stimulating cardiac regeneration are highly desirable. In the present study, we identified if and how a novel porcupine inhibitor CGX1321 influenced MI and cardiac regeneration. Permanent ligation of left anterior descending (LAD) coronary artery was performed in mice to induce MI injury. Cardiac function was measured by echocardiography, infarct size was examined by TTC staining. Fibrosis was evaluated with Masson's trichrome staining and vimentin staining. As a result, CGX1321 administration blocked the secretion of Wnt proteins, and inhibited both canonical and non-canonical Wnt signaling pathways. CGX1321 improved cardiac function, reduced myocardial infarct size, and fibrosis of post-MI hearts. CGX1321 significantly increased newly formed cardiomyocytes in infarct border zone of post-MI hearts, evidenced by the increased EdU+ cardiomyocytes. Meanwhile, CGX1321 increased Ki67+ and phosphohistone H3 (PH3+) cardiomyocytes in culture, indicating enhanced cardiomyocyte proliferation. The mRNA microarray showed that CGX1321 up-regulated cell cycle regulating genes such as Ccnb1 and Ccne1 CGX1321 did not alter YAP protein phosphorylation and nuclear translocation in cardiomyocytes. In conclusion, porcupine inhibitor CGX1321 reduces MI injury by limiting fibrosis and promoting regeneration. It promotes cardiomyocyte proliferation by stimulating cell cycle regulating genes with a Hippo/YAP-independent pathway.


Assuntos
Aciltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/enzimologia , Miócitos Cardíacos/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Aciltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Antígeno Ki-67/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosfoproteínas/metabolismo , Fosforilação , Ratos , Fatores de Tempo , Regulação para Cima , Proteínas Wnt/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas de Sinalização YAP
16.
Circ Res ; 117(11): 926-32, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26383970

RESUMO

RATIONALE: Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-ß super family of secreted factors. A recent study showed that reduced GDF11 blood levels with aging was associated with pathological cardiac hypertrophy (PCH) and restoring GDF11 to normal levels in old mice rescued PCH. OBJECTIVE: To determine whether and by what mechanism GDF11 rescues aging dependent PCH. METHODS AND RESULTS: Twenty-four-month-old C57BL/6 mice were given a daily injection of either recombinant (r) GDF11 at 0.1 mg/kg or vehicle for 28 days. rGDF11 bioactivity was confirmed in vitro. After treatment, rGDF11 levels were significantly increased, but there was no significant effect on either heart weight or body weight. Heart weight/body weight ratios of old mice were not different from 8- or 12-week-old animals, and the PCH marker atrial natriuretic peptide was not different in young versus old mice. Ejection fraction, internal ventricular dimension, and septal wall thickness were not significantly different between rGDF11 and vehicle-treated animals at baseline and remained unchanged at 1, 2, and 4 weeks of treatment. There was no difference in myocyte cross-sectional area rGDF11 versus vehicle-treated old animals. In vitro studies using phenylephrine-treated neonatal rat ventricular myocytes, to explore the putative antihypertrophic effects of GDF11, showed that GDF11 did not reduce neonatal rat ventricular myocytes hypertrophy, but instead induced hypertrophy. CONCLUSIONS: Our studies show that there is no age-related PCH in disease-free 24-month-old C57BL/6 mice and that restoring GDF11 in old mice has no effect on cardiac structure or function.


Assuntos
Envelhecimento/patologia , Proteínas Morfogenéticas Ósseas/farmacologia , Cardiomegalia/prevenção & controle , Fatores de Diferenciação de Crescimento/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Fatores Etários , Envelhecimento/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/administração & dosagem , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Células Cultivadas , Esquema de Medicação , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Fatores de Diferenciação de Crescimento/administração & dosagem , Injeções Intraperitoneais , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Recombinantes/farmacologia , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos , Pressão Ventricular/efeitos dos fármacos
17.
J Mol Cell Cardiol ; 90: 21-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26643815

RESUMO

Protease-activated receptor (PAR)4 is a low affinity thrombin receptor with less understood function relative to PAR1. PAR4 is involved in platelet activation and hemostasis, but its specific actions on myocyte growth and cardiac function remain unknown. This study examined the role of PAR4 deficiency on cardioprotection after myocardial ischemia-reperfusion (IR) injury in mice. When challenged by in vivo or ex vivo IR, PAR4 knockout (KO) mice exhibited increased tolerance to injury, which was manifest as reduced infarct size and a more robust functional recovery compared to wild-type mice. PAR4 KO mice also showed reduced cardiomyocyte apoptosis and putative signaling shifts in survival pathways in response to IR. Inhibition of PAR4 expression in isolated cardiomyocytes by shRNA offered protection against thrombin and PAR4-agonist peptide-induced apoptosis, while overexpression of wild-type PAR4 significantly enhanced the susceptibility of cardiomyocytes to apoptosis, even under low thrombin concentrations. Further studies implicate Src- and epidermal growth factor receptor-dependent activation of JNK on the proapoptotic effect of PAR4 in cardiomyocytes. These findings reveal a pivotal role for PAR4 as a regulator of cardiomyocyte survival and point to PAR4 inhibition as a therapeutic target offering cardioprotection after acute IR injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/genética , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptores de Trombina/genética , Animais , Apoptose/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Masculino , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Peptídeos/farmacologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Trombina/agonistas , Receptores de Trombina/antagonistas & inibidores , Receptores de Trombina/deficiência , Transdução de Sinais , Trombina/farmacologia , Quinases da Família src/genética , Quinases da Família src/metabolismo
18.
Basic Res Cardiol ; 111(1): 4, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26611208

RESUMO

Persistent elevation of Ca(2+) influx due to prolongation of the action potential (AP), chronic activation of the ß-adrenergic system and molecular remodeling occurs in stressed and diseased hearts. Increases in Ca(2+) influx are usually linked to prolonged myocyte action potentials and arrhythmias. However, the contribution of chronic enhancement of Cav1.2 activity on cardiac electrical remodeling and arrhythmogenicity has not been completely defined and is the subject of this study. Chronically increased Cav1.2 activity was produced with a cardiac specific, inducible double transgenic (DTG) mouse system overexpressing the ß2a subunit of Cav (Cavß2a). DTG myocytes had increased L-type Ca(2+) current (ICa-L), myocyte shortening, and Ca(2+) transients. DTG mice had enhanced cardiac performance, but died suddenly and prematurely. Telemetric electrocardiograms revealed shortened QT intervals in DTG mice. The action potential duration (APD) was shortened in DTG myocytes due to significant increases of potassium currents and channel abundance. However, shortened AP in DTG myocytes did not fully limit excess Ca(2+) influx and increased the peak and tail ICa-L. Enhanced ICa promoted sarcoplasmic reticulum (SR) Ca(2+) overload, diastolic Ca(2+) sparks and waves, and increased NCX activity, causing increased occurrence of early and delayed afterdepolarizations (EADs and DADs) that may contribute to premature ventricular beats and ventricular tachycardia. AV blocks that could be related to fibrosis of the AV node were also observed. Our study suggests that increasing ICa-L does not necessarily result in AP prolongation but causes SR Ca(2+) overload and fibrosis of AV node and myocardium to induce cellular arrhythmogenicity, arrhythmias, and conduction abnormalities.


Assuntos
Potenciais de Ação/fisiologia , Arritmias Cardíacas/fisiopatologia , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Western Blotting , Camundongos , Camundongos Transgênicos , Microscopia Confocal
19.
Clin Sci (Lond) ; 130(24): 2279-2293, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27682003

RESUMO

Cardiac troponin I (cTnI), a biomarker for myocardial damage and risk stratification, may be involved in the pathogenesis of cardiovascular diseases, which was ascribed to the effect of cTnI auto-antibodies. Whether or not cTnI itself has a direct impact on acute myocardial injury is unknown. To exclude the influence of cTnI antibody on the cardiac infarct size, we studied the effect of cTnI shortly after myocardial ischaemia-reperfusion (I/R) injury when cTnI antibodies were not elevated. Pretreatment with cTnI augmented the myocardial infarct size caused by I/R, accompanied by an increase in inflammatory markers in the blood and myocardium. Additional experiments using human umbilical vein endothelial cells (HUVECs) showed that the detrimental effect of cTnI was related to cTnI-induced increase in vascular cell adhesion molecule-1 (VCAM-1) expression and VCAM-1 mediated adhesion of human monocytes (THP-1) to HUVECs, which could be neutralized by VCAM-1 antibody. Both toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) were involved in the signalling pathway, because blockade of either TLR4 or NF-κB inhibited the cTnI's effect on VCAM-1 expression and adhesion of monocytes to endothelial cells. Moreover, TLR4 inhibition reduced cTnI-augmented cardiac injury in rats with I/R injury. We conclude that cTnI exacerbates myocardial I/R injury by inducing the adhesion of monocytes to vascular endothelial cells via activation of the TLR4/NF-κB pathway. Inhibition of TLR4 may be an alternative strategy to reduce cTnI-induced myocardial I/R injury.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA