Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255880

RESUMO

Auxin Response Factors (ARFs) mediate auxin signaling and govern diverse biological processes. However, a comprehensive analysis of the ARF gene family and identification of their key regulatory functions have not been conducted in Melastoma dodecandrum, leading to a weak understanding of further use and development for this functional shrub. In this study, we successfully identified a total of 27 members of the ARF gene family in M. dodecandrum and classified them into Class I-III. Class II-III showed more significant gene duplication than Class I, especially for MedARF16s. According to the prediction of cis-regulatory elements, the AP2/ERF, BHLH, and bZIP transcription factor families may serve as regulatory factors controlling the transcriptional pre-initiation expression of MedARF. Analysis of miRNA editing sites reveals that miR160 may play a regulatory role in the post-transcriptional expression of MeARF. Expression profiles revealed that more than half of the MedARFs exhibited high expression levels in the stem compared to other organs. While there are some specific genes expressed only in flowers, it is noteworthy that MedARF16s, MedARF7A, and MedARF9B, which are highly expressed in stems, also demonstrate high expressions in other organs of M. dodecandrum. Further hormone treatment experiments revealed that these MedARFs were sensitive to auxin changes, with MedARF6C and MedARF7A showing significant and rapid changes in expression upon increasing exogenous auxin. In brief, our findings suggest a crucial role in regulating plant growth and development in M. dodecandrum by responding to changes in auxin. These results can provide a theoretical basis for future molecular breeding in Myrtaceae.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Melastomataceae , Embaralhamento de DNA , Flores , Duplicação Gênica , Ácidos Indolacéticos/farmacologia
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256078

RESUMO

Heat shock factors (HSFs) are the key regulators of heat stress responses and play pivotal roles in tissue development and the temperature-induced regulation of secondary metabolites. In order to elucidate the roles of HSFs in Cymbidium ensifolium, we conducted a genome-wide identification of CeHSF genes and predicted their functions based on their structural features and splicing patterns. Our results revealed 22 HSF family members, with each gene containing more than one intron. According to phylogenetic analysis, 59.1% of HSFs were grouped into the A subfamily, while subfamily HSFC contained only two HSFs. And the HSF gene families were differentiated evolutionarily between plant species. Two tandem repeats were found on Chr02, and two segmental duplication pairs were observed on Chr12, Chr17, and Chr19; this provided evidence for whole-genome duplication (WGD) events in C. ensifolium. The core region of the promoter in most CeHSF genes contained cis-acting elements such as AP2/ERF and bHLH, which were associated with plant growth, development, and stress responses. Except for CeHSF11, 14, and 19, each of the remaining CeHSFs contained at least one miRNA binding site. This included binding sites for miR156, miR393, and miR319, which were responsive to temperature and other stresses. The HSF gene family exhibited significant tissue specificity in both vegetative and floral organs of C. ensifolium. CeHSF13 and CeHSF15 showed relatively significant expression in flowers compared to other genes. During flower development, CeHSF15 exhibited markedly elevated expression in the early stages of flower opening, implicating critical regulatory functions in organ development and floral scent-related regulations. During the poikilothermic treatment, CeHSF14 was upregulated over 200-fold after 6 h of heat treatment. CeHSF13 and CeHSF14 showed the highest expression at 6 h of low temperature, while the expression of CeHSF15 and CeHSF21 continuously decreased at a low temperature. The expression patterns of CeHSFs further confirmed their role in responding to temperature stress. Our study may help reveal the important roles of HSFs in plant development and metabolic regulation and show insight for the further molecular design breeding of C. ensifolium.


Assuntos
Temperatura Baixa , Resposta ao Choque Térmico , Temperatura , Filogenia , Resposta ao Choque Térmico/genética , Sítios de Ligação
3.
Polymers (Basel) ; 16(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257028

RESUMO

Soft materials bearing rigid, lightweight, and vibration-dampening properties offer distinct advantages over traditional wooden and metal-based fillings for spent fuel transport casks, due to their low density, tunable structure, excellent mechanical properties, and ease of processing. In this study, a novel type of rigid polyurethane foam is prepared using a conventional polycondensation reaction between isocyanate and hydroxy groups. Moreover, the density and size of the pores in these foams are precisely controlled through simultaneous gas generation. The as-prepared polyurethane exhibits high thermal stability exceeding 185 °C. Lifetime predictions based on thermal testing indicate that these polyurethane foams could last up to over 60 years, which is double the lifetime of conventional materials of about 30 years. Due to their occlusive structure, the mechanical properties of these polymeric materials meet the design standards for spent fuel transport casks, with maximum compression and tensile stresses of 6.89 and 1.37 MPa, respectively, at a testing temperature of -40 °C. In addition, these polymers exhibit effective flame retardancy; combustion ceased within 2 s after removal of the ignition source. All in all, this study provides a simple strategy for preparing rigid polymeric foams, presenting them as promising prospects for application in spent fuel transport casks.

4.
Plants (Basel) ; 13(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999576

RESUMO

Biochar is regarded as a soil improvement material possessing superior physical and chemical properties that can effectively enhance plant growth. However, there exists a paucity of research examining the efficacy of biochar in supplanting traditional materials and its subsequent impact on the growth of Ardisia crenata, which is currently domesticated as fruit ornamentals. In this study, the mechanism of biochar's effect on Ardisia crenata was analyzed by controlled experiments. For 180 days, their growth and development were meticulously assessed under different treatments through the measurement of various indices. Compared with the references, the addition of biochar led to an average increase in soil nutrient content, including a 14.1% rise in total nitrogen, a 564.1% increase in total phosphorus, and a 63.2% boost in total potassium. Furthermore, it improved the physical and chemical properties of the soil by reducing soil bulk density by 6.2%, increasing total porosity by 6.33%, and enhancing pore water by 7.35%, while decreasing aeration porosity by 1.11%. The growth and development of Ardisia crenata were better when the appending ratio of biochar was in the range of 30% to 50%, with the root parameters, such as root length, root surface area, and root volume, 48.90%, 62.00%, and 24.04% higher to reference. At the same time, the biomass accumulation of roots in the best group with adding biochar also increased significantly (55.80%). The addition of biochar resulted in a significant improvement in the content of chlorophyll a and chlorophyll b (1.947 mg g-1) and the net photosynthetic rate (5.6003 µmol m-2 s-1). This study's findings underpinned the addition of biochar in soil improvement and plant response. Therefore, biochar can favor the cultivation and industrial application of Ardisia crenata in the future, leading to an efficient and environmentally friendly industrial development.

5.
Sci Rep ; 14(1): 14236, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902461

RESUMO

Postoperative neurological dysfunction (PND) is one of the most common complications after a total aortic arch replacement (TAAR). Electrical impedance tomography (EIT) monitoring of cerebral hypoxia injury during TAAR is a promising technique for preventing the occurrence of PND. This study aimed to explore the feasibility of electrical impedance tomography (EIT) for warning of potential brain injury during total aortic arch replacement (TAAR) through building the correlation between EIT extracted parameters and variation of neurological biomarkers in serum. Patients with Stanford type A aortic dissection and requiring TAAR who were admitted between December 2021 to March 2022 were included. A 16-electrode EIT system was adopted to monitor each patient's cerebral impedance intraoperatively. Five parameters of EIT signals regarding to the hypothermic circulatory arrest (HCA) period were extracted. Meanwhile, concentration of four neurological biomarkers in serum were measured regarding to time before and right after surgery, 12 h, 24 h and 48 h after surgery. The correlation between EIT parameters and variation of serum biomarkers were analyzed. A total of 57 TAAR patients were recruited. The correlation between EIT parameters and variation of biomarkers were stronger for patients with postoperative neurological dysfunction (PND(+)) than those without postoperative neurological dysfunction (PND(-)) in general. Particularly, variation of S100B after surgery had significantly moderate correlation with two parameters regarding to the difference of impedance between left and right brain which were MRAIabs and TRAIabs (0.500 and 0.485 with p < 0.05, respectively). In addition, significantly strong correlations were seen between variation of S100B at 24 h and the difference of average resistivity value before and after HCA phase (ΔARVHCA), the slope of electrical impedance during HCA (kHCA) and MRAIabs (0.758, 0.758 and 0.743 with p < 0.05, respectively) for patients with abnormal S100B level before surgery. Strong correlations were seen between variation of TAU after surgery and ΔARVHCA, kHCA and the time integral of electrical impedance for half flow of perfusion (TARVHP) (0.770, 0.794 and 0.818 with p < 0.01, respectively) for patients with abnormal TAU level before surgery. Another two significantly moderate correlations were found between TRAIabs and variation of GFAP at 12 h and 24 h (0.521 and 0.521 with p < 0.05, respectively) for patients with a normal GFAP serum level before surgery. The correlations between EIT parameters and serum level of neurological biomarkers were significant in patients with PND, especially for MRAIabs and TRAIabs, indicating that EIT may become a powerful assistant for providing a real-time warning of brain injury during TAAR from physiological perspective and useful guidance for intensive care units.


Assuntos
Aorta Torácica , Biomarcadores , Lesões Encefálicas , Impedância Elétrica , Humanos , Masculino , Feminino , Biomarcadores/sangue , Pessoa de Meia-Idade , Aorta Torácica/cirurgia , Lesões Encefálicas/sangue , Lesões Encefálicas/etiologia , Lesões Encefálicas/cirurgia , Idoso , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Tomografia/métodos , Adulto , Dissecção Aórtica/cirurgia , Dissecção Aórtica/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA