Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Plant Biol ; 23(1): 280, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37231379

RESUMO

BACKGROUND: Hops (Humulus lupulus L.) are a dioecious climbing perennial, with the dried mature "cones" (strobili) of the pistillate/female inflorescences being widely used as both a bittering agent and to enhance the flavour of beer. The glandular trichomes of the bract and bracteole flowering structures of the cones produce an abundance of secondary metabolites, such as terpenoids, bitter acids and prenylated phenolics depending on plant genetics, developmental stage and environment. More knowledge is required on the functional and allelic diversity of terpene synthase (TPS) genes responsible for the biosynthesis of volatile terpenes to assist in flavour-directed hop breeding. RESULTS: Major volatile terpene compounds were identified using gas chromatography-mass spectrometry (GC-MS) in the ripe cones of twenty-one hop cultivars grown in New Zealand. All cultivars produced the monoterpene ß-myrcene and the sesquiterpenes α-humulene and ß-caryophyllene, but the quantities varied broadly. Other terpenes were found in large quantities in only a smaller subset of cultivars, e.g. ß-farnesene (in seven cultivars) and α-pinene (in four). In four contrasting cultivars (Wakatu™, Wai-iti™, Nelson Sauvin™, and 'Nugget'), terpene production during cone development was investigated in detail, with concentrations of some of the major terpenes increasing up to 1000-fold during development and reaching maximal levels from 50-60 days after flowering. Utilising the published H. lupulus genome, 87 putative full-length and partial terpene synthase genes were identified. Alleles corresponding to seven TPS genes were amplified from ripe cone cDNA from multiple cultivars and subsequently functionally characterised by transient expression in planta. Alleles of the previously characterised HlSTS1 produced humulene/caryophyllene as the major terpenes. HlRLS alleles produced (R)-(-)-linalool, whilst alleles of two sesquiterpene synthase genes, HlAFS1 and HlAFS2 produced α-farnesene. Alleles of HlMTS1, HlMTS2 and HlTPS1 were inactive in all the hop cultivars studied. CONCLUSIONS: Alleles of four TPS genes were identified and shown to produce key aroma volatiles in ripe hop cones. Multiple expressed but inactive TPS alleles were also identified, suggesting that extensive loss-of-function has occurred during domestication and breeding of hops. Our results can be used to develop hop cultivars with novel/improved terpene profiles using marker-assisted breeding strategies to select for, or against, specific TPS alleles.


Assuntos
Humulus , Humulus/genética , Humulus/metabolismo , Alelos , Melhoramento Vegetal , Terpenos/metabolismo
2.
BMC Plant Biol ; 21(1): 411, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496770

RESUMO

BACKGROUND: The phytohormone ethylene controls many processes in plant development and acts as a key signaling molecule in response to biotic and abiotic stresses: it is rapidly induced by flooding, wounding, drought, and pathogen attack as well as during abscission and fruit ripening. In kiwifruit (Actinidia spp.), fruit ripening is characterized by two distinct phases: an early phase of system-1 ethylene biosynthesis characterized by absence of autocatalytic ethylene, followed by a late burst of autocatalytic (system-2) ethylene accompanied by aroma production and further ripening. Progress has been made in understanding the transcriptional regulation of kiwifruit fruit ripening but the regulation of system-1 ethylene biosynthesis remains largely unknown. The aim of this work is to better understand the transcriptional regulation of both systems of ethylene biosynthesis in contrasting kiwifruit organs: fruit and leaves. RESULTS: A detailed molecular study in kiwifruit (A. chinensis) revealed that ethylene biosynthesis was regulated differently between leaf and fruit after mechanical wounding. In fruit, wound ethylene biosynthesis was accompanied by transcriptional increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS), ACC oxidase (ACO) and members of the NAC class of transcription factors (TFs). However, in kiwifruit leaves, wound-specific transcriptional increases were largely absent, despite a more rapid induction of ethylene production compared to fruit, suggesting that post-transcriptional control mechanisms in kiwifruit leaves are more important. One ACS member, AcACS1, appears to fulfil a dominant double role; controlling both fruit wound (system-1) and autocatalytic ripening (system-2) ethylene biosynthesis. In kiwifruit, transcriptional regulation of both system-1 and -2 ethylene in fruit appears to be controlled by temporal up-regulation of four NAC (NAM, ATAF1/2, CUC2) TFs (AcNAC1-4) that induce AcACS1 expression by directly binding to the AcACS1 promoter as shown using gel-shift (EMSA) and by activation of the AcACS1 promoter in planta as shown by gene activation assays combined with promoter deletion analysis. CONCLUSIONS: Our results indicate that in kiwifruit the NAC TFs AcNAC2-4 regulate both system-1 and -2 ethylene biosynthesis in fruit during wounding and ripening through control of AcACS1 expression levels but not in leaves where post-transcriptional/translational regulatory mechanisms may prevail.


Assuntos
Actinidia/genética , Etilenos/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Actinidia/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Liases/genética , Liases/metabolismo , Solanum lycopersicum/genética , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
3.
Plant J ; 100(6): 1148-1162, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436867

RESUMO

Terpenes are important compounds in plant trophic interactions. A meta-analysis of GC-MS data from a diverse range of apple (Malus × domestica) genotypes revealed that apple fruit produces a range of terpene volatiles, with the predominant terpene being the acyclic branched sesquiterpene (E,E)-α-farnesene. Four quantitative trait loci (QTLs) for α-farnesene production in ripe fruit were identified in a segregating 'Royal Gala' (RG) × 'Granny Smith' (GS) population with one major QTL on linkage group 10 co-locating with the MdAFS1 (α-farnesene synthase-1) gene. Three of the four QTLs were derived from the GS parent, which was consistent with GC-MS analysis of headspace and solvent-extracted terpenes showing that cold-treated GS apples produced higher levels of (E,E)-α-farnesene than RG. Transgenic RG fruit downregulated for MdAFS1 expression produced significantly lower levels of (E,E)-α-farnesene. To evaluate the role of (E,E)-α-farnesene in fungal pathogenesis, MdAFS1 RNA interference transgenic fruit and RG controls were inoculated with three important apple post-harvest pathogens [Colletotrichum acutatum, Penicillium expansum and Neofabraea alba (synonym Phlyctema vagabunda)]. From results obtained over four seasons, we demonstrate that reduced (E,E)-α-farnesene is associated with decreased disease initiation rates of all three pathogens. In each case, the infection rate was significantly reduced 7 days post-inoculation, although the size of successful lesions was comparable with infections on control fruit. These results indicate that (E,E)-α-farnesene production is likely to be an important factor involved in fungal pathogenesis in apple fruit.


Assuntos
Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Doenças das Plantas/imunologia , Sesquiterpenos/metabolismo , Colletotrichum/patogenicidade , Resistência à Doença , Regulação para Baixo , Fungos/patogenicidade , Cromatografia Gasosa-Espectrometria de Massas , Ligação Genética , Genótipo , Penicillium/patogenicidade , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Locos de Características Quantitativas , Interferência de RNA/imunologia , Terpenos/metabolismo
4.
Plant J ; 91(2): 292-305, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28380280

RESUMO

Fruit accumulate a diverse set of volatiles including esters and phenylpropenes. Volatile esters are synthesised via fatty acid degradation or from amino acid precursors, with the final step being catalysed by alcohol acyl transferases (AATs). Phenylpropenes are produced as a side branch of the general phenylpropanoid pathway. Major quantitative trait loci (QTLs) on apple (Malus × domestica) linkage group (LG)2 for production of the phenylpropene estragole and volatile esters (including 2-methylbutyl acetate and hexyl acetate) both co-located with the MdAAT1 gene. MdAAT1 has previously been shown to be required for volatile ester production in apple (Plant J., 2014, https://doi.org/10.1111/tpj.12518), and here we show it is also required to produce p-hydroxycinnamyl acetates that serve as substrates for a bifunctional chavicol/eugenol synthase (MdoPhR5) in ripe apple fruit. Fruit from transgenic 'Royal Gala' MdAAT1 knockdown lines produced significantly reduced phenylpropene levels, whilst manipulation of the phenylpropanoid pathway using MdCHS (chalcone synthase) knockout and MdMYB10 over-expression lines increased phenylpropene production. Transient expression of MdAAT1, MdoPhR5 and MdoOMT1 (O-methyltransferase) genes reconstituted the apple pathway to estragole production in tobacco. AATs from ripe strawberry (SAAT1) and tomato (SlAAT1) fruit can also utilise p-coumaryl and coniferyl alcohols, indicating that ripening-related AATs are likely to link volatile ester and phenylpropene production in many different fruit.


Assuntos
Anisóis/metabolismo , Malus/metabolismo , Proteínas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Derivados de Alilbenzenos , Ésteres/metabolismo , Fragaria/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Solanum lycopersicum/genética , Malus/genética , Redes e Vias Metabólicas , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas/genética , Locos de Características Quantitativas , Nicotiana/metabolismo
5.
BMC Genomics ; 19(1): 822, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442113

RESUMO

BACKGROUND: Pseudomonas syringae is a widespread bacterial species complex that includes a number of significant plant pathogens. Amongst these, P. syringae pv. actinidiae (Psa) initiated a worldwide pandemic in 2008 on cultivars of Actinidia chinensis var. chinensis. To gain information about the expression of genes involved in pathogenicity we have carried out transcriptome analysis of Psa during the early stages of kiwifruit infection. RESULTS: Gene expression in Psa was investigated during the first five days after infection of kiwifruit plantlets, using RNA-seq. Principal component and heatmap analyses showed distinct phases of gene expression during the time course of infection. The first phase was an immediate transient peak of induction around three hours post inoculation (HPI) that included genes that code for a Type VI Secretion System and nutrient acquisition (particularly phosphate). This was followed by a significant commitment, between 3 and 24 HPI, to the induction of genes encoding the Type III Secretion System (T3SS) and Type III Secreted Effectors (T3SE). Expression of these genes collectively accounted for 6.3% of the bacterial transcriptome at this stage. There was considerable variation in the expression levels of individual T3SEs but all followed the same temporal expression pattern, with the exception of hopAS1, which peaked later in expression at 48 HPI. As infection progressed over the time course of five days, there was an increase in the expression of genes with roles in sugar, amino acid and sulfur transport and the production of alginate and colanic acid. These are both polymers that are major constituents of extracellular polysaccharide substances (EPS) and are involved in biofilm production. Reverse transcription-quantitative PCR (RT-qPCR) on an independent infection time course experiment showed that the expression profile of selected bacterial genes at each infection phase correlated well with the RNA-seq data. CONCLUSIONS: The results from this study indicate that there is a complex remodeling of the transcriptome during the early stages of infection, with at least three distinct phases of coordinated gene expression. These include genes induced during the immediate contact with the host, those involved in the initiation of infection, and finally those responsible for nutrient acquisition.


Assuntos
Actinidia/microbiologia , Regulação Bacteriana da Expressão Gênica , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Perfilação da Expressão Gênica/métodos , Genes Bacterianos/genética , Doenças das Plantas/microbiologia , Fatores de Tempo , Virulência/genética
6.
BMC Genomics ; 19(1): 257, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661190

RESUMO

BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


Assuntos
Actinidia/genética , Genoma de Planta , Genes de Plantas , Genótipo , Anotação de Sequência Molecular , Proteínas de Plantas/genética
7.
Plant J ; 82(6): 937-950, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25904040

RESUMO

Phenylpropenes, such as eugenol and trans-anethole, are important aromatic compounds that determine flavour and aroma in many herbs and spices. Some apple varieties produce fruit with a highly desirable spicy/aromatic flavour that has been attributed to the production of estragole, a methylated phenylpropene. To elucidate the molecular basis for estragole production and its contribution to ripe apple flavour and aroma we characterised a segregating population from a Royal Gala (RG, estragole producer) × Granny Smith (GS, non-producer) apple cross. Two quantitative trait loci (QTLs; accounting for 9.2 and 24.8% of the variation) on linkage group (LG) 1 and LG2 were identified that co-located with seven candidate genes for phenylpropene O-methyltransferases (MdoOMT1-7). Of these genes, only expression of MdoOMT1 on LG1 increased strongly with ethylene and could be correlated with increasing estragole production in ripening RG fruit. Transient over-expression in tobacco showed that MdoOMT1 utilised a range of phenylpropene substrates and catalysed the conversion of chavicol to estragole. Royal Gala carried two alleles (MdoOMT1a, MdoOMT1b) whilst GS appeared to be homozygous for MdoOMT1b. MdoOMT1a showed a higher affinity and catalytic efficiency towards chavicol than MdoOMT1b, which could account for the phenotypic variation at the LG1 QTL. Multiple transgenic RG lines with reduced MdoOMT1 expression produced lower levels of methylated phenylpropenes, including estragole and methyleugenol. Differences in fruit aroma could be perceived in these fruit, compared with controls, by sensory analysis. Together these results indicate that MdoOMT1 is required for the production of methylated phenylpropenes in apple and that phenylpropenes including estragole may contribute to ripe apple fruit aroma.


Assuntos
Anisóis/metabolismo , Frutas/metabolismo , Malus/metabolismo , Metiltransferases/metabolismo , Proteínas de Plantas/genética , Derivados de Alilbenzenos , Etilenos/metabolismo , Eugenol/análogos & derivados , Eugenol/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Malus/genética , Metiltransferases/genética , Dados de Sequência Molecular , Odorantes , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Locos de Características Quantitativas
8.
Plant Physiol ; 167(4): 1243-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25649633

RESUMO

Two kiwifruit (Actinidia) species with contrasting terpene profiles were compared to understand the regulation of fruit monoterpene production. High rates of terpinolene production in ripe Actinidia arguta fruit were correlated with increasing gene and protein expression of A. arguta terpene synthase1 (AaTPS1) and correlated with an increase in transcript levels of the 2-C-methyl-D-erythritol 4-phosphate pathway enzyme 1-deoxy-D-xylulose-5-phosphate synthase (DXS). Actinidia chinensis terpene synthase1 (AcTPS1) was identified as part of an array of eight tandemly duplicated genes, and AcTPS1 expression and terpene production were observed only at low levels in developing fruit. Transient overexpression of DXS in Nicotiana benthamiana leaves elevated monoterpene synthesis by AaTPS1 more than 100-fold, indicating that DXS is likely to be the key step in regulating 2-C-methyl-D-erythritol 4-phosphate substrate flux in kiwifruit. Comparative promoter analysis identified potential NAC (for no apical meristem [NAM], Arabidopsis transcription activation factor [ATAF], and cup-shaped cotyledon [CUC])-domain transcription factor) and ETHYLENE-INSENSITIVE3-like transcription factor (TF) binding sites in the AaTPS1 promoter, and cloned members of both TF classes were able to activate the AaTPS1 promoter in transient assays. Electrophoretic mobility shift assays showed that AaNAC2, AaNAC3, and AaNAC4 bind a 28-bp fragment of the proximal NAC binding site in the AaTPS1 promoter but not the A. chinensis AcTPS1 promoter, where the NAC binding site was mutated. Activation could be restored by reintroducing multiple repeats of the 12-bp NAC core-binding motif. The absence of NAC transcriptional activation in ripe A. chinensis fruit can account for the low accumulation of AcTPS1 transcript, protein, and monoterpene volatiles in this species. These results indicate the importance of NAC TFs in controlling monoterpene production and other traits in ripening fruits.


Assuntos
Actinidia/enzimologia , Alquil e Aril Transferases/metabolismo , Regulação da Expressão Gênica de Plantas , Monoterpenos/metabolismo , Proteínas de Plantas/metabolismo , Actinidia/genética , Actinidia/crescimento & desenvolvimento , Alquil e Aril Transferases/genética , Sequência de Bases , Eritritol/análogos & derivados , Eritritol/metabolismo , Etilenos/metabolismo , Frutas/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Expressão Gênica , Dados de Sequência Molecular , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Fosfatos Açúcares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transferases/genética , Transferases/metabolismo
9.
Plant J ; 78(6): 903-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24661745

RESUMO

The 'fruity' attributes of ripe apples (Malus × domestica) arise from our perception of a combination of volatile ester compounds. Phenotypic variability in ester production was investigated using a segregating population from a 'Royal Gala' (RG; high ester production) × 'Granny Smith' (GS; low ester production) cross, as well as in transgenic RG plants in which expression of the alcohol acyl transferase 1 (AAT1) gene was reduced. In the RG × GS population, 46 quantitative trait loci (QTLs) for the production of esters and alcohols were identified on 15 linkage groups (LGs). The major QTL for 35 individual compounds was positioned on LG2 and co-located with AAT1. Multiple AAT1 gene variants were identified in RG and GS, but only two (AAT1-RGa and AAT1-GSa) were functional. AAT1-RGa and AAT1-GSa were both highly expressed in the cortex and skin of ripe fruit, but AAT1 protein was observed mainly in the skin. Transgenic RG specifically reduced in AAT1 expression showed reduced levels of most key esters in ripe fruit. Differences in the ripe fruit aroma could be perceived by sensory analysis. The transgenic lines also showed altered ratios of biosynthetic precursor alcohols and aldehydes, and expression of a number of ester biosynthetic genes increased, presumably in response to the increased substrate pool. These results indicate that the AAT1 locus is critical for the biosynthesis of esters contributing to a 'ripe apple' flavour.


Assuntos
Acetiltransferases/genética , Ésteres/metabolismo , Malus/genética , Proteínas de Plantas/genética , Locos de Características Quantitativas , Acetiltransferases/metabolismo , Acetiltransferases/fisiologia , Mapeamento Cromossômico , Regulação para Baixo , Estudos de Associação Genética , Ligação Genética , Variação Genética , Malus/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/metabolismo
10.
BMC Plant Biol ; 15: 185, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215656

RESUMO

BACKGROUND: Carotenoid compounds play essential roles in plants such as protecting the photosynthetic apparatus and in hormone signalling. Coloured carotenoids provide yellow, orange and red colour to plant tissues, as well as offering nutritional benefit to humans and animals. The enzyme phytoene synthase (PSY) catalyses the first committed step of the carotenoid biosynthetic pathway and has been associated with control of pathway flux. We characterised four PSY genes found in the apple genome to further understand their involvement in fruit carotenoid accumulation. RESULTS: The apple PSY gene family, containing six members, was predicted to have three functional members, PSY1, PSY2, and PSY4, based on translation of the predicted gene sequences and/or corresponding cDNAs. However, only PSY1 and PSY2 showed activity in a complementation assay. Protein localisation experiments revealed differential localization of the PSY proteins in chloroplasts; PSY1 and PSY2 localized to the thylakoid membranes, while PSY4 localized to plastoglobuli. Transcript levels in 'Granny Smith' and 'Royal Gala' apple cultivars showed PSY2 was most highly expressed in fruit and other vegetative tissues. We tested the transient activation of the apple PSY1 and PSY2 promoters and identified potential and differential regulation by AP2/ERF transcription factors, which suggested that the PSY genes are controlled by different transcriptional mechanisms. CONCLUSION: The first committed carotenoid pathway step in apple is controlled by MdPSY1 and MdPSY2, while MdPSY4 play little or no role in this respect. This has implications for apple breeding programmes where carotenoid enhancement is a target and would allow co-segregation with phenotypes to be tested during the development of new cultivars.


Assuntos
Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Geranil-Geranildifosfato Geranil-Geraniltransferase/genética , Malus/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Frutas/metabolismo , Geranil-Geranildifosfato Geranil-Geraniltransferase/metabolismo , Malus/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Alinhamento de Sequência
11.
BMC Plant Biol ; 15: 304, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714876

RESUMO

BACKGROUND: Ripening in tomato is predominantly controlled by ethylene, whilst in fruit such as grape, it is predominantly controlled by other hormones. The ripening response of many kiwifruit (Actinidia) species is atypical. The majority of ripening-associated fruit starch hydrolysis, colour change and softening occurs in the apparent absence of ethylene production (Phase 1 ripening) whilst Phase 2 ripening requires autocatalytic ethylene production and is associated with further softening and an increase in aroma volatiles. RESULTS: To dissect the ripening response in the yellow-fleshed kiwifruit A. chinensis ('Hort16A'), a two dimensional developmental stage X ethylene response time study was undertaken. As fruit progressed through maturation and Phase 1 ripening, fruit were treated with different concentrations of propylene and ethylene. At the start of Phase 1 ripening, treated fruit responded to ethylene, and were capable of producing endogenous ethylene. As the fruit progressed through Phase 1 ripening, the fruit became less responsive to ethylene and endogeneous ethylene production was partially repressed. Towards the end of Phase 1 ripening the fruit were again able to produce high levels of ethylene. Progression through Phase 1 ripening coincided with a developmental increase in the expression of the ethylene-unresponsive MADS-box FRUITFUL-like gene (FUL1). The ability to respond to ethylene however coincided with a change in expression of another MADS-box gene SEPALLATA4/RIPENING INHIBITOR-like (SEP4/RIN). The promoter of SEP4/RIN was shown to be transactivated by EIN3-like transcription factors, but unlike tomato, not by SEP4/RIN itself. Transient over-expression of SEP4/RIN in kiwifruit caused an increase in ethylene production. CONCLUSIONS: These results suggest that the non-ethylene/ethylene ripening response observed in kiwifruit is a hybrid of both the tomato and grape ripening progression, with Phase 1 being akin to the RIN/ethylene inhibitory response observed in grape and Phase 2 akin to the RIN-associated autocatalytic ethylene response observed in tomato.


Assuntos
Actinidia/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Actinidia/crescimento & desenvolvimento , Actinidia/metabolismo , Etilenos/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo
12.
Plant Physiol ; 161(2): 787-804, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23256150

RESUMO

Terpenes are specialized plant metabolites that act as attractants to pollinators and as defensive compounds against pathogens and herbivores, but they also play an important role in determining the quality of horticultural food products. We show that the genome of cultivated apple (Malus domestica) contains 55 putative terpene synthase (TPS) genes, of which only 10 are predicted to be functional. This low number of predicted functional TPS genes compared with other plant species was supported by the identification of only eight potentially functional TPS enzymes in apple 'Royal Gala' expressed sequence tag databases, including the previously characterized apple (E,E)-α-farnesene synthase. In planta functional characterization of these TPS enzymes showed that they could account for the majority of terpene volatiles produced in cv Royal Gala, including the sesquiterpenes germacrene-D and (E)-ß-caryophyllene, the monoterpenes linalool and α-pinene, and the homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene. Relative expression analysis of the TPS genes indicated that floral and vegetative tissues were the primary sites of terpene production in cv Royal Gala. However, production of cv Royal Gala floral-specific terpenes and TPS genes was observed in the fruit of some heritage apple cultivars. Our results suggest that the apple TPS gene family has been shaped by a combination of ancestral and more recent genome-wide duplication events. The relatively small number of functional enzymes suggests that the remaining terpenes produced in floral and vegetative and fruit tissues are maintained under a positive selective pressure, while the small number of terpenes found in the fruit of modern cultivars may be related to commercial breeding strategies.


Assuntos
Alquil e Aril Transferases/genética , Genômica/métodos , Malus/genética , Família Multigênica , Proteínas de Plantas/genética , Terpenos/metabolismo , Monoterpenos Acíclicos , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/metabolismo , Sequência de Bases , Monoterpenos Bicíclicos , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/classificação , Malus/metabolismo , Dados de Sequência Molecular , Monoterpenos/química , Monoterpenos/metabolismo , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Sesquiterpenos Policíclicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Especificidade da Espécie , Terpenos/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Volatilização
13.
Mol Hortic ; 3(1): 9, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37789478

RESUMO

Volatile terpenes are important compounds that influence fruit flavour and aroma of kiwifruit. Terpenes in plants also impact on the floral bouquet and defence against pests and pathogens in leaves and fruit. To better understand the overlapping roles that terpenes may fulfil in plants, a systematic gene, chemical and biochemical analysis of terpenes and terpene synthases (TPS) was undertaken in Red5 kiwifruit (Actinidia spp.). Analysis of the Red5 genome shows it contains only 22 TPS gene models, of which fifteen encode full-length TPS. Thirteen TPS can account for the major terpene volatiles produced in different tissues of Red5 kiwifruit and in response to different stimuli. The small Red5 TPS family displays surprisingly high functional redundancy with five TPS producing linalool/nerolidol. Treatment of leaves and fruit with methyl jasmonate enhanced expression of a subset of defence-related TPS genes and stimulated the release of terpenes. Six TPS genes were induced upon herbivory of leaves by the economically important insect pest Ctenopseustis obliquana (brown-headed leaf roller) and emission, but not accumulation, of (E)- and (Z)-nerolidol was strongly linked to herbivory. Our results provide a framework to understand the overlapping biological and ecological roles of terpenes in Actinidia and other horticultural crops.

14.
J Exp Bot ; 63(5): 1951-67, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22162874

RESUMO

Flowers of the kiwifruit species Actinidia chinensis produce a mixture of sesquiterpenes derived from farnesyl diphosphate (FDP) and monoterpenes derived from geranyl diphosphate (GDP). The tertiary sesquiterpene alcohol (E)-nerolidol was the major emitted volatile detected by headspace analysis. Contrastingly, in solvent extracts of the flowers, unusually high amounts of (E,E)-farnesol were observed, as well as lesser amounts of (E)-nerolidol, various farnesol and farnesal isomers, and linalool. Using a genomics-based approach, a single gene (AcNES1) was identified in an A. chinensis expressed sequence tag library that had significant homology to known floral terpene synthase enzymes. In vitro characterization of recombinant AcNES1 revealed it was an enzyme that could catalyse the conversion of FDP and GDP to the respective (E)-nerolidol and linalool terpene alcohols. Enantiomeric analysis of both AcNES1 products in vitro and floral terpenes in planta showed that (S)-(E)-nerolidol was the predominant enantiomer. Real-time PCR analysis indicated peak expression of AcNES1 correlated with peak (E)-nerolidol, but not linalool accumulation in flowers. This result, together with subcellular protein localization to the cytoplasm, indicated that AcNES1 was acting as a (S)-(E)-nerolidol synthase in A. chinensis flowers. The synthesis of high (E,E)-farnesol levels appears to compete for the available pool of FDP utilized by AcNES1 for sesquiterpene biosynthesis and hence strongly influences the accumulation and emission of (E)-nerolidol in A. chinensis flowers.


Assuntos
Actinidia/enzimologia , Farneseno Álcool/metabolismo , Flores/enzimologia , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Actinidia/genética , Actinidia/metabolismo , Monoterpenos Acíclicos , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Difosfatos/metabolismo , Diterpenos/metabolismo , Farneseno Álcool/análise , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Cinética , Dados de Sequência Molecular , Monoterpenos/análise , Monoterpenos/metabolismo , Óleos Voláteis/análise , Óleos Voláteis/metabolismo , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Fosfatos de Poli-Isoprenil/metabolismo , Proteínas Recombinantes , Análise de Sequência de DNA , Sesquiterpenos/análise , Especificidade por Substrato , Nicotiana/genética , Nicotiana/metabolismo
15.
Proteomics ; 10(18): 3367-78, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20707005

RESUMO

Arterial disease is a major diabetic complication, yet the component molecular mechanisms of diabetic arteriopathy remain poorly understood. In order to identify major proteins/pathways implicated in diabetic arteriopathy, we studied the effect of 16-wk untreated streptozotocin-induced diabetes on the rat aortic proteome. Specific protein levels in isolated aortas were compared in six discrete, pair-wise (streptozotocin-diabetic and non-diabetic age-matched controls) experiments in which individual proteins were identified and quantified by iTRAQ combined with LC-MS/MS. A total of 398 unique non-redundant proteins were identified in at least one experiment and 208 were detected in three or more. Between-group comparisons revealed significant changes or trends towards changes in relative abundance of 51 proteins (25 increased, 26 decreased). Differences in levels of selected proteins were supported by Western blotting and/or enzyme assays. The most prominent diabetes-associated changes were in groups of proteins linked to oxidative stress responses and the structure/function of myofibrils and microfilaments. Indexes of mitochondrial content were measurably lower in aortic tissue from diabetic animals. Functional cluster analysis also showed decreased levels of glycolytic enzymes and mitochondrial electron transport system-complex components. These findings newly implicate several proteins/functional pathways in the pathogenesis of arteriosclerosis/diabetic arteriopathy.


Assuntos
Aorta/química , Doenças da Aorta/complicações , Complicações do Diabetes/metabolismo , Animais , Aorta/metabolismo , Doenças da Aorta/metabolismo , Masculino , Ratos , Ratos Wistar
16.
Proteomics ; 9(18): 4309-20, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19634143

RESUMO

This study aimed to identify new diabetic nephropathy (DN)-related proteins and renal targets of the copper(II)-selective chelator, triethylenetetramine (TETA) in streptozotocin-diabetic rats. We used the recently developed iTRAQ technology to compare renal protein profiles among non-diabetic, diabetic, and TETA-treated diabetic rats. In diabetic kidneys, tubulointerstitial nephritis antigen (TINag), voltage-dependent anion-selective channel (VDAC) 1, and VDAC2 were up-regulated in parallel with alterations in expression of proteins with functions in oxidative stress and oxidative phosphorylation (OxPhos) pathways. By contrast, mitochondrial HSP 60, Cu/Zn-superoxide dismutase, glutathione S-transferase alpha3 and aquaporin-1 were down-regulated in diabetic kidneys. Following TETA treatment, levels of D-amino acid oxidase-1, epoxide hydrolase-1, aquaporin-1, and a number of mitochondrial proteins were normalized, with concomitant amelioration of albuminuria. Changes in levels of TINag, collagen VIalpha1, actinin 4alpha, apoptosis-inducing factor 1, cytochrome C, histone H3, VDAC1, and aquaporin-1 were confirmed by Western blotting or immunohistochemistry. Changes in expression of proteins related to tubulointerstitial function, podocyte structure, and mitochondrial apoptosis are implicated in the mechanism of DN and their reversal by TETA. These findings are consistent with the hypothesis that this new experimental therapy may be useful for treatment of DN.


Assuntos
Quelantes/farmacologia , Cobre/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Proteômica/métodos , Trientina/farmacologia , Animais , Cátions/metabolismo , Moléculas de Adesão Celular/metabolismo , Colágeno Tipo VI/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/urina , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/urina , Regulação para Baixo , Glutationa Peroxidase/metabolismo , Imuno-Histoquímica , Masculino , Nefrite Intersticial/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Regulação para Cima
17.
J Exp Bot ; 60(11): 3203-19, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19516075

RESUMO

Kiwifruit vines rely on bees for pollen transfer between spatially separated male and female individuals and require synchronized flowering to ensure pollination. Volatile terpene compounds, which are important cues for insect pollinator attraction, were studied by dynamic headspace sampling in the major green-fleshed kiwifruit (Actinidia deliciosa) cultivar 'Hayward' and its male pollinator 'Chieftain'. Terpene volatile levels showed a profile dominated by the sesquiterpenes alpha-farnesene and germacrene D. These two compounds were emitted by all floral tissues and could be observed throughout the day, with lower levels at night. The monoterpene (E)-beta-ocimene was also detected in flowers but was emitted predominantly during the day and only from petal tissue. Using a functional genomics approach, two terpene synthase (TPS) genes were isolated from a 'Hayward' petal EST library. Bacterial expression and transient in planta data combined with analysis by enantioselective gas chromatography revealed that one TPS produced primarily (E,E)-alpha-farnesene and small amounts of (E)-beta-ocimene, whereas the second TPS produced primarily (+)-germacrene D. Subcellular localization using GFP fusions showed that both enzymes were localized in the cytoplasm, the site for sesquiterpene production. Real-time PCR analysis revealed that both TPS genes were expressed in the same tissues and at the same times as the corresponding floral volatiles. The results indicate that two genes can account for the major floral sesquiterpene volatiles observed in both male and female A. deliciosa flowers.


Assuntos
Actinidia/enzimologia , Alquil e Aril Transferases/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Actinidia/química , Actinidia/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Flores/química , Flores/enzimologia , Flores/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência
18.
Methods Enzymol ; 515: 43-61, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22999169

RESUMO

In vitro-based analyses of monoterpene synthase (mono-TPS) enzymes have led to a wealth of knowledge regarding their catalytic behavior, the mechanistic principles governing their product specificity, and the molecular basis for their evolution. However, the efficient production of active enzymes in Escherichia coli or yeast can be challenging. Agrobacterium-mediated transient expression in tobacco leaves is increasingly being used as a viable alternative to in vitro-based approaches for the production and functional analysis of a wide range of plant proteins. Transient expression is well suited for qualitative and semiquantitative analyses of mono-TPS enzyme product specificity and, in conjunction with standard volatile analysis techniques, provides an efficient tool for screening mono-TPS function in planta. The primary advantages of this system for mono-TPS analysis are that both mono-TPS genomic clones and cDNAs can be cloned directly into plant expression vectors without modification and expressed enzymes can be analyzed without the need for purification or endogenous precursor addition. Here, we describe a simple and cost-effective method for the in planta functional analysis of plant mono-TPS enzymes. This method can accommodate both the analysis of single genes and the scaling for more high-throughput functional screening of mono-TPS gene families or mutant libraries.


Assuntos
Regulação Enzimológica da Expressão Gênica , Genes de Plantas , Liases Intramoleculares/metabolismo , Nicotiana/enzimologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Clonagem Molecular , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Ensaios de Triagem em Larga Escala , Hidroliases/genética , Hidroliases/metabolismo , Liases Intramoleculares/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sensibilidade e Especificidade , Especificidade por Substrato , Nicotiana/genética , Transformação Genética
19.
Proteomics Clin Appl ; 1(4): 387-99, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21136691

RESUMO

Cardiac disease is the commonest cause of death amongst diabetic patients. Diabetic cardiomyopathy, which has a poor prognosis, is characterized by left ventricular hypertrophy and impaired cardiac function and mitochondrial damage is said to contribute to its development. We recently showed that treatment with the Cu(II) -selective chelator, triethylenetetramine (TETA), improved cardiac structure, and function in diabetic subjects without modifying hyperglycemia. Thus, TETA has potential utility for the treatment of heart disease. To further understand the molecular mechanism by which it causes these effects, we have conducted the first study of the effect of oral TETA on protein abundance in the cardiac left ventricle of rats with severe streptozotocin-induced diabetes. Proteomic methods showed that of 211 proteins changed in diabetes, 33 recovered after treatment. Through MS, 16 proteins were identified which may constitute major targets of drug action. Remarkably, most of these were mitochondrial proteins with roles in energy metabolism. In addition to components of the mitochondrial respiratory chain and enzymes involved in fatty acid oxidation, TETA treatment normalized both myocardial expression and enzymatic activity of carnitine palmitoyltransferase 2. These findings indicate that mitochondria constitute major targets in the mechanism by which TETA restores cardiac structure and function in diabetes.

20.
Mol Pharmacol ; 70(6): 2045-51, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16973718

RESUMO

Most patients with diabetes die from cardiac or arterial disease, for which there are limited therapeutic options. Free Cu(2+) ions are strongly pro-oxidant, and chelatable-Cu(II) is increased in the diabetic heart. We reported previously that treatment by Cu(II)-selective chelation with triethylenetetramine (TETA) evokes elevated urinary Cu(II) in diabetic rats and humans in whom it also improved hallmarks of established left ventricular (LV) disease. Here, we treated diabetic rats with TETA and evaluated its ability to ameliorate Cu(2+)-mediated LV and arterial damage by modifying the expression of molecular targets that included transforming growth factor (TGF)-beta1, Smad4, extracellular matrix (ECM) proteins, extracellular superoxide dismutase (EC-SOD), and heparan sulfate (HS). Eight-weeks of TETA treatment significantly improved cardiac diastolic function but not [glucose](plasma) in diabetic animals. LV and aortic mRNAs corresponding to TGF-beta1, Smad4, collagen types I, III, and IV, and fibronectin-1, and plasminogen activator inhibitor-1, were elevated in untreated diabetic animals and normalized after TETA treatment. EC-SOD mRNA and protein, and [HS](tissue) were significantly decreased in diabetes and restored by drug treatment. Candidate molecular mechanisms by which TETA could ameliorate diabetic cardiac and arteriovascular disease include the suppression of an activated TGF-beta/Smad signaling pathway that mediates increased ECM gene expression and restoration of normal EC-SOD and HS regulation. These findings are relevant to the restoration toward normal by TETA treatment of cardiac and arterial structure and function in diabetes.


Assuntos
Aorta/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Matriz Extracelular/efeitos dos fármacos , Coração/efeitos dos fármacos , Animais , Aorta/enzimologia , Aorta/metabolismo , Sequência de Bases , Western Blotting , Quelantes/farmacologia , Cobre/química , Primers do DNA , Diabetes Mellitus Experimental/enzimologia , Ensaio de Imunoadsorção Enzimática , Matriz Extracelular/enzimologia , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Reação em Cadeia da Polimerase , Ratos , Ratos Wistar , Transdução de Sinais , Proteínas Smad/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA