Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 81(7): 192, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801460

RESUMO

The plant-colonized microbial communities have closely micro-ecological effects on host plant growth and health. There are many medicinal plants in the genus Hedyotis, but it is yet unclear about the shoot-assembled bacterial and fungal communities (SBFC) of Hedyotis plants. Hence, eight plant populations of Hedyotis diffusa (HD) and H. corymbosa (HC) were evaluated with 16S rRNA gene and ITS sequences, for comparing the types, abundance, or/and potential functions of SBFC at plant species- and population levels. In tested HD- and HC-SBFC, 682 fungal operational taxonomic units and 1,329 bacterial zero-radius operational taxonomic units were identified, with rich species compositions and varied alpha diversities. Notably, the SBFC compositions of HD and HC plant populations were exhibited with partly different types and abundances at phylum and genus levels but without significantly different beta diversities at plant species and population levels. Typically, the SBFC of HD and HC plant populations were presented with abundance-different biomarkers, such as Frankiaceae and Bryobacteraceae, and with similar micro-ecological functions of microbial metabolisms of lipids, terpenoids,and xenobiotics. Taken together, HD- and HC-SBFC possessed with varied rich compositions, conservative taxonomic structures, and similar metabolic functions, but with small-scale type and abundance differences at plant species- and population- levels.


Assuntos
Bactérias , Fungos , Hedyotis , Microbiota , RNA Ribossômico 16S , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , RNA Ribossômico 16S/genética , Hedyotis/química , Hedyotis/genética , Brotos de Planta/microbiologia , Plantas Medicinais/microbiologia , Filogenia , Biodiversidade
2.
Drug Dev Ind Pharm ; 47(7): 1052-1063, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33784225

RESUMO

In order to explore the effect of the hollow capsule material formulation on the capsule glue and film formation, this study used hydroxypropylmethylcellulose (HPMC), carrageenan, KCl and Tween 80 as raw materials to determine the production of HPMC hollow capsules suitable formula. The optimal process conditions are as follows: the proportions of HPMC, carrageenan, KCl and Tween 80 in the solvent (purified water) are 18% (m:V), 0.7% (m:V), 0.07% (m:V) and 0.018% (V:V), respectively. Under this condition, the viscosity of the resulting solution, glue solidification temperature and gel strength were medium. The resulting film has low hygroscopicity, good solubility, optical properties and mechanical properties. This research can provide data support for the precise formulation and industrial production of HPMC hollow plant capsules.


Assuntos
Metilcelulose , Cápsulas , Carragenina , Derivados da Hipromelose , Solubilidade
3.
Front Microbiol ; 15: 1435010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39171260

RESUMO

Introduction: Klebsiella pneumoniae (K. pneumoniae) is the most common pathogen causing hospital respiratory tract infection and epidemic. Gold standard procedures of microscopic examination and biochemical identification are widely used in clinical diagnosis with disadvantages of low sensitivity, time-consuming and sophisticated equipment requiring. An efficient, nucleic acid amplification-based sensitive and specific on-site identification of K. pneumoniae in clinical is necessary to facilitate clinical medication and disease control. Methods: We developed a closed dumbbell mediated isothermal amplification (CDA) assay for the rapid and sensitive detection of conserved rcsA gene in K. pneumoniae by real-time fluorescence monitoring and end-point colorimetric judgement. We designed and selected a pair of inner primers of CDA to detect K. pneumoniae. Then outer and loop primers were designed and verified to accelerate CDA reaction to achieve more efficient detection of K. pneumoniae. Results: The results showed the detection limit of CDA assay was 1.2 × 10-5 ng/µL (approximately 1 copy of the target gene) within 60 min, which was 100-fold more sensitive than real-time quantitative PCR (qPCR). Several pathogen genomic DNAs (Staphylococcus aureus, Shigella sonnei, Vibrio parahaemolyticus, Escherichia coli, Candida glabrata, Candida tropicalis, Candida parapsilosis, Candida albicans, Streptococcus agalactiae, Rickettsia, Listeria monocytogenes, Pseudomonas aeruginosa, Klebsiella oxytoca, and Klebsiella aerogenes) were used to evaluate the sensitivity and specificity of the established K. pneumoniae CDA assay. Total 224 batches of samples from other strains tested were negative and 296 batches of extracted K. pneumoniae DNA samples were positive by the developed CDA amplification approach, revealing high specificity and specificity of the diagnostic assay. In addition, the results of real-time fluorescence amplification of the K. pneumoniae CDA were in consistent with those of end-point colorimetric results. Discussion: The established real-time fluorescence and visual CDA assays of K. pneumoniae with merits of rapid, sensitive and specificity could be helpful for on-site diagnosis and clinical screening in rural areas.

4.
J Med Food ; 26(6): 401-415, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36787478

RESUMO

In China, Perillae folium is widely used to treat colds, especially in the early stages of cold; the effect of taking P. folium is readily noticeable at that time. The active compounds and targets of P. folium were screened from Traditional Chinese Medicine Systems Pharmacology, Chinese Pharmacopoeia, and UniProt. Targets related to the initiation and progression of 2019 Coronavirus Disease (COVID-19) were retrieved from Online Mendelian Inheritance in Man and GeneCards. The potential therapeutic targets of P. folium on COVID-19 were the cross targets between them. Enrichment analysis of Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were conducted by using the Database for Annotation, Visualization and Integrated Discovery website. Molecular docking between key compounds and core targets was performed with AutoDock. The effects of P. folium extract and rosmarinic acid on inflammatory cytokines were tested by a cellular inflammatory model. The "Perillae folium-compound-target-COVID-19" network contained 11 kinds of compounds and 33 matching targets. There were 261 items in the GO functions (P < .05) and 67 items linked to the KEGG signaling pathways (P < .05). Luteolin and rosmarinic acid were key compounds of P. folium. Their docking with the core targets mitogen-activated protein kinase 1 (MAPK1) and chemokine (C-C motif) ligand 2 (CCL2), respectively, showed that they had good affinity with each other. Cell experiments demonstrated that P. folium extract had inhibitory effects on interleukin-6 and tumor necrosis factor (TNF)-α in cells, and was better than rosmarinic acid. Luteolin, rosmarinic acid, and other individual active compounds in P. folium, which may participate in PI3K-Akt, TNF, Jak-STAT, COVID-19, and other multisignaling pathways through multiple targets such as MAPK1 and CCL2, and play a therapeutic role in COVID-19.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Humanos , Farmacologia em Rede , Luteolina/farmacologia , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Fator de Necrose Tumoral alfa , Medicamentos de Ervas Chinesas/farmacologia , Ácido Rosmarínico
5.
J Orthop Surg Res ; 18(1): 500, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454090

RESUMO

BACKGROUND: The function of mesenchymal stem cells (MSCs) from patients with osteoporosis (OP) is impaired and worsens in patients with type 2 diabetes mellitus (T2DM). Icariin (ICA) is the major active flavonoid glucoside isolated from traditional Chinese herbal Epimedium pubescens, and confirmed able to improve bone mass of OP patients. OBJECTIVE: To investigate the effect of ICA on the proliferation and osteogenic differentiation of bone-derived MSCs (BMSCs) from patients with OP and T2DM and uncover the potential mechanism. METHODS: BMSCs were treated with ICA, and proliferation and osteogenic potency were evaluated using the 2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and detection of osteogenic markers (ALP, RUNX2, SPP1, COL1A1, and mineralized nodules) was performed. RNA sequencing and bioinformatic analysis were performed to identify differentially expressed genes (DEGs) after ICA treatment and screen proliferation- and osteogenic differentiation-related processes. Gene gain and loss were performed to confirm the role of the key candidate gene. RESULTS: ICA significantly promoted the proliferation and osteogenic differentiation of BMSCs. A total of 173 DEGs were identified after ICA treatment. Six DEGs (GLI-1, IGF2, BMP6, WNT5A, PTHLH, and MAPK14) enriched in both proliferation- and osteogenic differentiation-related processes were screened; GLI-1 had the highest validated |log2FC| value. Overexpression of GLI-1 enhanced the proliferation and osteogenic differentiation of BMSCs, and knockdown of GLI-1 weakened the positive effect of ICA on BMSCs. CONCLUSION: ICA promoted the proliferation and osteogenic differentiation of impaired BMSCs by upregulating GLI-1.


Assuntos
Diabetes Mellitus Tipo 2 , Células-Tronco Mesenquimais , Osteoporose , Humanos , Osteogênese/genética , Diferenciação Celular , Osteoporose/tratamento farmacológico , Osteoporose/genética , Proliferação de Células/genética , Células Cultivadas
6.
J Orthop Surg Res ; 17(1): 402, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050744

RESUMO

BACKGROUND: Osteoporosis (OP) patients complicated with type II diabetes mellitus (T2DM) has a higher fracture risk than the non-diabetic patients, and mesenchymal stem cells (MSCs) from T2DM patients also show a weaker osteogenic potent. The present study aimed to provide a gene expression profile in MSCs from diabetic OP and investigated the potential mechanism. METHODS: The bone-derived MSC (BMSC) was isolated from OP patients complicated with or without T2DM (CON-BMSC, T2DM-BMSC). Osteogenic differentiation was evaluated by qPCR analysis of the expression levels of osteogenic markers, ALP activity and mineralization level. The differentially expressed genes (DEGs) in T2DM-BMSC was identified by RNA-sequence, and the biological roles of DEGs was annotated by bioinformatics analyses. The role of silencing the transcription factor (TF), Forkhead box Q1 (FOXQ1), on the osteogenic differentiation of BMSC was also investigated. RESULTS: T2DM-BMSC showed a significantly reduced osteogenic potent compare to the CON-BMSC. A total of 448 DEGs was screened in T2DM-BMSC, and bioinformatics analyses showed that many TFs and the target genes were enriched in various OP- and diabetes-related biological processes and pathways. FOXQ1 had the highest verified fold change (abs) among the top 8 TFs, and silence of FOXQ1 inhibited the osteogenic differentiation of CON-BMSC. CONCLUSIONS: Our study provided a comprehensive gene expression profile of BMSC in diabetic OP, and found that downregulated FOXQ1 was responsible for the reduced osteogenic potent of T2DM-BSMC. This is of great importance for the special mechanism researches and the treatment of diabetic OP.


Assuntos
Diabetes Mellitus Tipo 2 , Fatores de Transcrição Forkhead , Células-Tronco Mesenquimais , Osteoporose , Diferenciação Celular/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Osteoporose/genética , Osteoporose/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA