RESUMO
Influenza remains a significant threat to public health. In severe cases, excessive inflammation can lead to severe pneumonia or acute respiratory distress syndrome, contributing to patient morbidity and mortality. While antivirals can be effective if administered early, current anti-inflammatory drugs have limited success in treating severe cases. Therefore, discovering new anti-inflammatory agents to inhibit influenza-related inflammatory diseases is crucial. Herein, we screened a drug library with known targets using a human monocyte U937 infected with the influenza virus to identify novel anti-inflammatory agents. We also evaluated the anti-inflammatory effects of the hit compounds in an influenza mouse model. Our research revealed that JAK inhibitors exhibited a higher hit rate and more potent inhibition effect than inhibitors targeting other drug targets in vitro. Of the 22 JAK inhibitors tested, 15 exhibited robust anti-inflammatory activity against influenza virus infection in vitro. Subsequently, we evaluated the efficacy of 10 JAK inhibitors using an influenza mouse model and observed that seven provided protection ranging from 40% to 70% against lethal influenza virus infection. We selected oclacitinib as a representative compound for an extensive study to further investigate the in vivo therapeutic potential of JAK inhibitors for severe influenza-associated inflammation. Our results revealed that oclacitinib effectively suppressed neutrophil and macrophage infiltration, reduced pro-inflammatory cytokine production, and ultimately mitigated lung injury in mice infected with lethal influenza virus without impacting viral titer. These findings suggest that JAK inhibitors can modulate immune responses to influenza virus infection and may serve as potential treatments for influenza.IMPORTANCEAntivirals exhibit limited efficacy in treating severe influenza when not administered promptly during the infection. Current steroidal and nonsteroidal anti-inflammatory drugs demonstrate restricted effectiveness against severe influenza or are associated with significant side effects. Therefore, there is an urgent need for novel anti-inflammatory agents that possess high potency and minimal adverse reactions. In this study, 15 JAK inhibitors were identified through a screening process based on their anti-inflammatory activity against influenza virus infection in vitro. Remarkably, 7 of the 10 selected inhibitors exhibited protective effects against lethal influenza virus infection in mice, thereby highlighting the potential therapeutic value of JAK inhibitors for treating influenza.
Assuntos
Doenças Transmissíveis , Influenza Humana , Inibidores de Janus Quinases , Infecções por Orthomyxoviridae , Orthomyxoviridae , Pirimidinas , Sulfonamidas , Humanos , Animais , Camundongos , Influenza Humana/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Citocinas , Infecções por Orthomyxoviridae/tratamento farmacológico , Inflamação/tratamento farmacológico , Doenças Transmissíveis/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Antivirais/uso terapêutico , Antivirais/farmacologia , PulmãoRESUMO
Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.
Assuntos
Lesão Pulmonar Aguda , Queimaduras , Nanoestruturas , Lesão Pulmonar Aguda/tratamento farmacológico , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Queimaduras/tratamento farmacológico , Animais , Pulmão , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/químicaRESUMO
Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.
Assuntos
Nefropatias Diabéticas , Glomerulonefrite , Nefrite Lúpica , Humanos , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/metabolismo , Rim/metabolismo , NanotecnologiaRESUMO
Metal-organic frameworks (MOFs) are metal-organic skeleton compounds composed of self-assembled metal ions or clusters and organic ligands. MOF materials often have porous structures, high specific surface areas, uniform and adjustable pores, high surface activity and easy modification and have a wide range of prospects for application. MOFs have been widely used. In recent years, with the continuous expansion of MOF materials, they have also achieved remarkable results in the field of antimicrobial agents. In this review, the structural composition and synthetic modification of MOF materials are introduced in detail, and the antimicrobial mechanisms and applications of these materials in the healing of infected wounds are described. Moreover, the opportunities and challenges encountered in the development of MOF materials are presented, and we expect that additional MOF materials with high biosafety and efficient antimicrobial capacity will be developed in the future.
Assuntos
Estruturas Metalorgânicas , Cicatrização , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Cicatrização/efeitos dos fármacos , Humanos , Animais , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Porosidade , Infecção dos Ferimentos/tratamento farmacológicoRESUMO
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Assuntos
Produtos Biológicos , Doenças Inflamatórias Intestinais , Nanopartículas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Espécies Reativas de Nitrogênio/metabolismoRESUMO
To evaluate the efficacy of one-step acellular dermis combined with autologous split thickness skin grafting in the treatment of burn or trauma wounds by a multicenter controlled study. In patients with extensive burns, it is even difficult to repair the wounds due to the shortage of autologous skin. The traditional skin grafting method has the disadvantages of large damage to the donor site, insufficient skin source and unsatisfactory appearance, wear resistance and elasticity of the wound tissue after skin grafting. One-step acellular dermis combined with autologous ultra-thin split thickness skin graft can achieve better healing effect in the treatment of burn and trauma wounds. A total of 1208 patients who underwent single-layer skin grafting and one-step composite skin grafting in the First Affiliated Hospital of Wannan Medical College, Wuhan Third People's Hospital and Lu 'an People's Hospital from 2019 to 2022 were retrospectively analysed. The total hospitalization cost, total operation cost, hospitalization days after surgery, wound healing rate after 1 week of skin grafting and scar follow-up at 6 months after discharge were compared and studied. The total cost of hospitalization and operation in the composite skin grafting group was significantly higher than those in the single-layer autologous skin grafting group. The wound healing rate after 1 week of skin grafting and the VSS score of scar in the follow-up of 6 months after discharge were better than those in the single-layer skin grafting group. One-step acellular dermis combined with autologous ultra-thin split thickness skin graft has high wound healing rate, less scar, smooth appearance and good elasticity in repairing burn and trauma wounds, which can provide an ideal repair method for wounds.
Assuntos
Derme Acelular , Queimaduras , Humanos , Cicatriz/cirurgia , Estudos Retrospectivos , Transplante de Pele/métodos , Queimaduras/cirurgia , Transplante AutólogoRESUMO
BACKGROUND: Accurate lymph node staging is important for the diagnosis and treatment of patients with bladder cancer. We aimed to develop a lymph node metastases diagnostic model (LNMDM) on whole slide images and to assess the clinical effect of an artificial intelligence-assisted (AI) workflow. METHODS: In this retrospective, multicentre, diagnostic study in China, we included consecutive patients with bladder cancer who had radical cystectomy and pelvic lymph node dissection, and from whom whole slide images of lymph node sections were available, for model development. We excluded patients with non-bladder cancer and concurrent surgery, or low-quality images. Patients from two hospitals (Sun Yat-sen Memorial Hospital of Sun Yat-sen University and Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China) were assigned before a cutoff date to a training set and after the date to internal validation sets for each hospital. Patients from three other hospitals (the Third Affiliated Hospital of Sun Yat-sen University, Nanfang Hospital of Southern Medical University, and the Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China) were included as external validation sets. A validation subset of challenging cases from the five validation sets was used to compare performance between the LNMDM and pathologists, and two other datasets (breast cancer from the CAMELYON16 dataset and prostate cancer from the Sun Yat-sen Memorial Hospital of Sun Yat-sen University) were collected for a multi-cancer test. The primary endpoint was diagnostic sensitivity in the four prespecified groups (ie, the five validation sets, a single-lymph-node test set, the multi-cancer test set, and the subset for a performance comparison between the LNMDM and pathologists). FINDINGS: Between Jan 1, 2013 and Dec 31, 2021, 1012 patients with bladder cancer had radical cystectomy and pelvic lymph node dissection and were included (8177 images and 20 954 lymph nodes). We excluded 14 patients (165 images) with concurrent non-bladder cancer and also excluded 21 low-quality images. We included 998 patients and 7991 images (881 [88%] men; 117 [12%] women; median age 64 years [IQR 56-72]; ethnicity data not available; 268 [27%] with lymph node metastases) to develop the LNMDM. The area under the curve (AUC) for accurate diagnosis of the LNMDM ranged from 0·978 (95% CI 0·960-0·996) to 0·998 (0·996-1·000) in the five validation sets. Performance comparisons between the LNMDM and pathologists showed that the diagnostic sensitivity of the model (0·983 [95% CI 0·941-0·998]) substantially exceeded that of both junior pathologists (0·906 [0·871-0·934]) and senior pathologists (0·947 [0·919-0·968]), and that AI assistance improved sensitivity for both junior (from 0·906 without AI to 0·953 with AI) and senior (from 0·947 to 0·986) pathologists. In the multi-cancer test, the LNMDM maintained an AUC of 0·943 (95% CI 0·918-0·969) in breast cancer images and 0·922 (0·884-0·960) in prostate cancer images. In 13 patients, the LNMDM detected tumour micrometastases that had been missed by pathologists who had previously classified these patients' results as negative. Receiver operating characteristic curves showed that the LNMDM would enable pathologists to exclude 80-92% of negative slides while maintaining 100% sensitivity in clinical application. INTERPRETATION: We developed an AI-based diagnostic model that did well in detecting lymph node metastases, particularly micrometastases. The LNMDM showed substantial potential for clinical applications in improving the accuracy and efficiency of pathologists' work. FUNDING: National Natural Science Foundation of China, the Science and Technology Planning Project of Guangdong Province, the National Key Research and Development Programme of China, and the Guangdong Provincial Clinical Research Centre for Urological Diseases.
Assuntos
Inteligência Artificial , Metástase Linfática , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/patologia , Metástase Linfática/diagnóstico , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos RetrospectivosRESUMO
Dengue virus (DENV) is a mosquito-borne pathogen that causes a spectrum of diseases including life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Vascular leakage is a common clinical crisis in DHF/DSS patients and highly associated with increased endothelial permeability. The presence of vascular leakage causes hypotension, circulatory failure, and disseminated intravascular coagulation as the disease progresses of DHF/DSS patients, which can lead to the death of patients. However, the mechanisms by which DENV infection caused the vascular leakage are not fully understood. This study reveals a distinct mechanism by which DENV induces endothelial permeability and vascular leakage in human endothelial cells and mice tissues. We initially show that DENV2 promotes the matrix metalloproteinase-9 (MMP-9) expression and secretion in DHF patients' sera, peripheral blood mononuclear cells (PBMCs), and macrophages. This study further reveals that DENV non-structural protein 1 (NS1) induces MMP-9 expression through activating the nuclear factor κB (NF-κB) signaling pathway. Additionally, NS1 facilitates the MMP-9 enzymatic activity, which alters the adhesion and tight junction and vascular leakage in human endothelial cells and mouse tissues. Moreover, NS1 recruits MMP-9 to interact with ß-catenin and Zona occludens protein-1/2 (ZO-1 and ZO-2) and to degrade the important adhesion and tight junction proteins, thereby inducing endothelial hyperpermeability and vascular leakage in human endothelial cells and mouse tissues. Thus, we reveal that DENV NS1 and MMP-9 cooperatively induce vascular leakage by impairing endothelial cell adhesion and tight junction, and suggest that MMP-9 may serve as a potential target for the treatment of hypovolemia in DSS/DHF patients.
Assuntos
Dengue/patologia , Células Endoteliais/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Permeabilidade Capilar/fisiologia , Adesão Celular/fisiologia , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/metabolismo , Humanos , Camundongos , Junções Íntimas/metabolismoRESUMO
Peroxyoxalate chemiluminescence (PO-CL) is one of the most popular cold light sources, yet the drawback of aggregation-caused quenching limits their use. Here, we report a new kind of efficient bifunctional emitter derived from salicylic acid, which not only exhibits typical aggregation-induced emission (AIE) character but also has the ability to catalyze the CL process under basic conditions based on base sensitivity. By taking advantage of these unique features, we successfully confine the CL process on the surface of solid bases and provide a high-contrast visualization of CL emission. This method allows most of the common basic salts like sodium carbonate to be invisible encryption information ink and PO-CL solution to be a decryption tool to visualize the hidden information. The current study opens up an appealing way for the development of multifunction CL emitters for information encryption and decryption applications.
RESUMO
The development of efficient deep-blue emitters with thermally activated delayed fluorescence (TADF) properties is a highly significant but challenging task in the field of organic light-emitting diode (OLED) applications. Herein, we report the design and synthesis of two new 4,10-dimethyl-6H,12H-5,11-methanodibenzo[b,f][1,5]diazocine (TB)-derived TADF emitters, TB-BP-DMAC and TB-DMAC, which feature distinct benzophenone (BP)-derived acceptors but share the same dimethylacridin (DMAC) donors. Our comparative study reveals that the amide acceptor in TB-DMAC exhibits a significantly weaker electron-withdrawing ability in comparison to that of the typical benzophenone acceptor employed in TB-BP-DMAC. This disparity not only causes a noticeable blue shift in the emission from green to deep blue but also enhances the emission efficiency and the reverse intersystem crossing (RISC) process. As a result, TB-DMAC emits efficient deep-blue delay fluorescence with a photoluminescence quantum yield (PLQY) of 50.4% and a short lifetime of 2.28 µs in doped film. The doped and non-doped OLEDs based on TB-DMAC display efficient deep-blue electroluminescence with spectral peaks at 449 and 453 nm and maximum external quantum efficiencies (EQEs) of 6.1% and 5.7%, respectively. These findings indicate that substituted amide acceptors are a viable option for the design of high-performance deep-blue TADF materials.
RESUMO
The plasma procalcitonin (PCT) concentration and red blood cell distribution (RDW) value after severe burns can be used as prognostic indicators, but at present, it is difficult to give consideration to sensitivity and specificity in diagnosing the prognosis of severe burns with a single indicator. This study analysed the diagnostic value of plasma PCT concentration and RDW value at admission on the prognosis of severe burn patients to improve its sensitivity and specificity. A total of 205 patients with severe burns who were treated in the First Affiliated Hospital of Anhui Medical University from November 2017 to November 2022 were retrospectively analysed. The optimal cut-off values of plasma PCT concentration and RDW were analysed and counted through the subject curve (ROC curve). According to the cut-off value, patients were divided into high PCT group and low PCT group, high RDW group and low RDW group. The independent risk factors of severe burns were analysed by single-factor and multiple-factor COX regression. Kaplan-Meier survival was used to analyse the mortality of high PCT group and low PCT group, high RDW group and low RDW group. The area under the curve of plasma PCT concentration and RDW value at admission was 0.761 (95% CI, 0.662-0.860, P < .001), 0.687 (95% CI, 0.554-0.820, P = .003) respectively, and the optimal cut-off values of serum PCT concentration and RDW were 2.775 ng/mL and 14.55% respectively. Cox regression analysis found that age, TBSA, and RDW were independent risk factors for mortality within 90 days after severe burns. Kaplan-Meier survival analysis showed that there was a significant difference in the 90-day mortality rate of severe burns between the PCT ≥ 2.775 ng/mL group and the PCT < 2.775 ng/mL group (log-rank: 24.162; P < .001), with the mortality rate of 36.84% versus 5.49%, respectively. The 90-day mortality rate of severe burns was significantly different between the RDW ≥ 14.55% group and the RDW < 14.55% group (log-rank: 14.404; P < .001), with the mortality rate of 44% versus 12.2% respectively. The plasma PCT concentration and RDW value at admission are both of diagnostic value for the 90-day mortality of severe burns, but the plasma PCT concentration has higher sensitivity and the RDW value has higher specificity. Age, TBSA, and RDW were independent risk factors for severe burns, and then plasma PCT concentration was not independent risk factors.
Assuntos
Queimaduras , Pró-Calcitonina , Humanos , Lactente , Estudos Retrospectivos , Prognóstico , Queimaduras/diagnóstico , EritrócitosRESUMO
BACKGROUND Ensuring the take rate of skin grafting and reducing the mortality of patients with severe burns have remained big challenges worldwide. This retrospective study from a single center aimed to evaluate the efficacy of pulsed lavage following excision of burns ≥30% of the total body surface area (TBSA) in 63 patients. MATERIAL AND METHODS Among 63 patients, the types of burns sustained were severe burns and extremely severe burns (≥30% TBSA). The degrees of the burns were second degree and third degree, and the causes were thermal, chemical, and electric. Patients with early aggressive excision were divided into a pulsed lavage group and control group. The constituent of the lavage fluid was 0.9% physiological saline. The evaluation of wound healing and complications was based on the wound healing rate and time, clinical symptoms, and examination. We determined the take rate of skin grafting, positive rate of postoperative bacterial cultures, changes in perioperative serum C-reactive protein (CRP) and procalcitonin (PCT) levels, and incidence of secondary grafting. RESULTS The take rate of skin grafting and the decreased rates of perioperative serum CRP and PCT levels were significantly higher in the pulsed lavage group than in the control group (P<0.05). Moreover, the positive rate of wound postoperative bacterial cultures and mortality in the pulsed lavage group showed remarkably lower levels (P<0.05). CONCLUSIONS Pulsed lavage following excision of burns ≥30% TBSA increased the take rate of skin grafting, alleviated the positive rate of postoperative bacterial cultures, decreased serum CRP and PCT levels, and reduced mortality.
Assuntos
Queimaduras , Irrigação Terapêutica , Humanos , Superfície Corporal , Estudos Retrospectivos , Queimaduras/cirurgia , Transplante de Pele/métodos , Proteína C-ReativaRESUMO
In the previous study, we have proved that exosomal miR-451 from human umbilical cord mesenchymal stem cells (hUC-MSCs) attenuated burn-induced acute lung injury (ALI). However, the mechanism of exosomal miR-451 in ALI remains unclear. Therefore, this study aimed to study the molecular mechanism of hUC-MSCs-derived exosomal miR-451 on ALI by regulating macrophage polarization. Exosomes were isolated and identified by transmission electron microscope (TEM) and nanoparticle tracking analysis (NTA). The expression of miR-451, macrophage migration inhibitory factor (MIF) and PI3K/AKT signaling pathway proteins were detected by qRT-PCR and western blot. Flow cytometry was used to detect the CD80 and CD206 positive cells. Severe burn rat model was established and HE was used to detect the inflammatory cell infiltration and inflammatory injury. Dual luciferase reporter system was used to detect the regulation of miR-451 to MIF. The contents of cytokines were detected by ELISA. The results showed that hUC-MSCs exosomes promoted macrophage M1 to M2 polarization. Furthermore, hUC-MSCs-derived exosomal miR-451 alleviated ALI development and promoted macrophage M1 to M2 polarization. Moreover, MIF was a direct target of miR-451. Downregulation of MIF regulated by miR-451 alleviated ALI development promoted macrophage M1 to M2 polarization. In addition, we found that MIF and hUC-MSCs-derived exosomal miR-451 participated in ALI by regulating PI3K/AKT signaling pathway. In conclusion, we indicated that hUC-MSCs-derived exosomal miR-451 alleviated ALI by modulating macrophage M2 polarization via regulating MIF-PI3K-AKT signaling pathway, which provided great scientific significance and clinical application value for the treatment of burn-induced ALI.
Assuntos
Lesão Pulmonar Aguda , Queimaduras , Fatores Inibidores da Migração de Macrófagos , Células-Tronco Mesenquimais , MicroRNAs , Ratos , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Transdução de Sinais/genética , Macrófagos/metabolismo , Queimaduras/genética , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismoRESUMO
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human cancers, such as Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). Current treatment options for KSHV infection and virus associated diseases are sometimes ineffective, therefore, more effectively antiviral agents are urgently needed. As a herpesvirus, lytic replication is critical for KSHV pathogenesis and oncogenesis. In this study, we have established a high-throughput screening assay by using an inducible KSHV+ cell-line, iSLK.219. After screening a compound library that consisted of 1280 Food and Drug Administration (FDA)-approved drugs, 15 hit compounds that effectively inhibited KSHV virion production were identified, most of which have never been reported with anti-KSHV activities. Interestingly, 3 of these drugs target histamine receptors or signaling. Our data further confirmed that antagonists targeting different histamine receptors (HxRs) displayed excellent inhibitory effects on KSHV lytic replication from induced iSLK.219 or BCBL-1 cells. In contrast, histamine and specific agonists of HxRs promoted viral lytic replication from induced iSLK.219 or KSHV-infected primary cells. Mechanistic studies indicated that downstream MAPK and PI3K/Akt signaling pathways were required for histamine/receptors mediated promotion of KSHV lytic replication. Direct knockdown of HxRs in iSLK.219 cells effectively blocked viral lytic gene expression during induction. Using samples from a cohort of HIV+ patients, we found that the KSHV+ group has much higher levels of histamine in their plasma and saliva than the KSHV- group. Taken together, our data have identified new anti-KSHV agents and provided novel insights into the molecular bases of host factors that contribute to lytic replication and reactivation of this oncogenic herpesvirus.
Assuntos
Antivirais/farmacologia , Herpesvirus Humano 8/efeitos dos fármacos , Histamina/metabolismo , Sarcoma de Kaposi/virologia , Ativação Viral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Herpesvirus Humano 8/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Receptores Histamínicos/metabolismo , Transdução de Sinais/fisiologia , Ativação Viral/fisiologia , Latência Viral/efeitos dos fármacos , Latência Viral/fisiologiaRESUMO
OBJECTIVE: To investigate the incidence rate of infectious diseases during hospitalization in late preterm infants in Beijing, China, as well as the risk factors for infectious diseases and the effect of breastfeeding on the development of infectious diseases. METHODS: Related data were collected from the late preterm infants who were hospitalized in the neonatal wards of 25 hospitals in Beijing, China, from October 23, 2015 to October 30, 2017. According to the feeding pattern, they were divided into a breastfeeding group and a formula feeding group. The two groups were compared in terms of general status and incidence rate of infectious diseases. A multivariate logistic regression analysis was used to investigate the risk factors for infectious diseases. RESULTS: A total of 1 576 late preterm infants were enrolled, with 153 infants in the breastfeeding group and 1 423 in the formula feeding group. Of all infants, 484 (30.71%) experienced infectious diseases. The breastfeeding group had a significantly lower incidence rate of infectious diseases than the formula feeding group (22.88% vs 31.55%, P=0.033). The multivariate logistic regression analysis showed that breastfeeding was an independent protective factor against infectious diseases (OR=0.534, P=0.004), while male sex, premature rupture of membranes, gestational diabetes mellitus, and asphyxia were risk factors for infectious diseases (OR=1.328, 5.386, 1.535, and 2.353 respectively, P < 0.05). CONCLUSIONS: Breastfeeding can significantly reduce the incidence of infectious diseases and is a protective factor against infectious diseases in late preterm infants. Breastfeeding should therefore be actively promoted for late preterm infants during hospitalization.
Assuntos
Aleitamento Materno , Doenças Transmissíveis , Hospitalização , Recém-Nascido Prematuro , Pequim/epidemiologia , China/epidemiologia , Doenças Transmissíveis/epidemiologia , Feminino , Hospitais , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , GravidezRESUMO
Metal-free ultralong organic phosphorescence (UOP) materials have attracted significant attention owing to their anomalous photophysical properties and potential applications in various fields. Here, three pyrimidine-based organic luminogens, 9-(pyrimidin-2-yl)-9H-carbazole, 9-(4,6-dimethylpyrimidin-2-yl)-9H-carbazole, and 9-(5-bromopyrimidin-2-yl)-9H-carbazole are designed and synthesized, which show efficient yellow UOP with the longest lifetimes up to 1.37 s and the highest absolute phosphorescence quantum yields up to 23.6% under ambient conditions. Theoretical calculations, crystal structures, and photophysical properties of these compounds reveal that intramolecular hydrogen bonding, intermolecular π-π interactions, and intermolecular electronic coupling are responsible for forming dimers and generating highly efficient UOP. Their efficacy as solid materials for data encryption is demonstrated.
RESUMO
BACKGROUND Acute lung injury (ALI) often occurs early and seriously in the progress of sepsis. Netrin-1 is demonstrated to be an effective anti-inflammatory agent. However, whether netrin-1 can relieve sepsis-induced ALI remains unknown. MATERIAL AND METHODS The sepsis rat model was built with the method of cecal ligation and puncture (CLP). The lung tissue changes were represented as the results of hematoxylin-eosin (HE) staining, wet-to-dry (W/D) ratio, Western blot analysis, and immunohistochemistry. An in vitro lung injury model was simulated with LPS-induced BEAS-2B cells. The cell transfection effects were evaluated by Western blot analysis and RT-qPCR analysis. TNF-alpha, IL-1ß, and IL-6 levels were detected by Western blot analysis in LPS-induced BEAS-2B cells. RESULTS Obvious inflammation caused by sepsis appeared in lung tissues with the increase of the W/D ratio and expression of inflammatory cytokines. Netrin-1 and its receptor UNC5B were reduced in sepsis. However, upregulation of netrin-1 alleviated the levels of inflammation and increased the UNC5B levels in BEAS-2B cells. CONCLUSIONS Netrin-1 protects against ALI in sepsis rats through its anti-inflammation effect and may provide a novel treatment to prevent lung injury caused by sepsis.
Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Netrina-1/metabolismo , Netrina-1/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Pulmão/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Sepse/complicações , Sepse/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Intervertebral disc degeneration is a major cause of chronic low back pain, and excessive loading contributes to intervertebral disc degeneration. However, the lack of an effective bipedal in vivo animal model limits research about this condition. QUESTIONS/PURPOSES: To evaluate the utility of a new type of bipedal standing mouse model for intervertebral disc degeneration, we asked: (1) Are there spinal degeneration changes in bipedal mice as determined by lumbar disc height, histologic features, and immunohistochemistry measures compared with control mice? (2) Are the bipedal mice comparable to aged mice for simulating the spinal degeneration caused by increased stress? METHODS: Thirty-two 8-week-old male C57BL/6 mice were divided into experimental and control groups. Based on their hydrophobia, mice in the experimental group were placed in a limited water-containing space (5 mm deep) and were thereby induced to actively take a bipedal standing posture. This was conducted twice a day for a total of 6 hours a day, 7 days a week. Control mice were similarly placed in a limited but water-free space. Video surveillance was used to calculate the percentage of time spent in the bipedal stance for the two groups of mice. Compared with the control group, the percentage of time standing on both feet in the experimental group was higher (48% ± 5%, 95% confidence interval [CI], 42%-54% versus 95% ± 1%, 95% CI, 92%-97%; p < 0.001). Eight mice from both groups were then randomly euthanized at either 6 or 10 weeks and lumbar spine specimens (L3-L6) were collected. The lumbar disc height index (DHI%) of the two groups was compared using micro-CT measurements, and the extent of disc degeneration was assessed based on histologic staining (cartilage endplate height, disc degeneration score) and by immunohistochemistry (Col2a1,CollagenX, matrix metalloprotease-13 [MMP-13], osteocalcin [OCN]). In addition, the histopathologic features of spinal degeneration were compared with 12- and 18-month-old mice. A p value < 0.05 indicated a significant difference. RESULTS: Lumbar disc degeneration was aggravated after 10 weeks with the DHI% decreasing (5.0% ± 0.4%; 95% CI, 4.6%-5.5% versus 4.6 ± 0.3%; 95% CI, 4.3%-4.9%; p = 0.011). Histologically, the cartilage endplate height of the experimental group was decreased compared with the control group (30 ± 6 µm; 95% CI, 24-37 µm versus 70 ± 7 µm; 95% CI, 63-79 µm; p < 0.001), and the disc degeneration score was increased (5 ± 1; 95% CI, 4-6 versus 1 ± 1; 95% CI, 0-2; p < 0.001). Expression of Col2a1, vimentin, and aggrecan in the experimental group was decreased compared with the control group, whereas the expressions of collagen X (60% ± 2%; 95% CI, 55%-66% versus 19% ± 3%; 95% CI, 17%-24%; p < 0.001), MMP-13 (54% ± 8%; 95% CI, 49%-61% versus 1% ± 1%; 95% CI, 1%-2%; p < 0.001), and OCN (41% ± 3%; 95% CI, 34%-49% versus 5% ± 1%; 95% CI, 2%-7%, p < 0.001) were increased. The spine degeneration caused by this model was primarily manifested in the degeneration of the annulus fibrosus and facet joints compared with aged mice, whereas the degree of degeneration in the nucleus pulposus tissue and cartilage endplates was mild. CONCLUSIONS: We believe we have established a noninvasive and effective in vivo bipedal mouse model for studying disc degeneration and biologic signal transduction comparable to that seen in intervertebral disc degeneration. CLINICAL RELEVANCE: This in vivo mouse model of intervertebral disc degeneration can simulate the pathogenesis of spinal degeneration caused by increased stress and this can be used to study questions such as disc herniation in young adults.
Assuntos
Modelos Animais de Doenças , Degeneração do Disco Intervertebral , Articulação Zigapofisária/patologia , Animais , China , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Posição Ortostática , Gravação em VídeoRESUMO
Room-temperature phosphorescence (RTP) was realized for the first time in a polyoxometalate-based charge-transfer (CT) hybrid material bearing polyoxometalates (POMs) as electron-donors (D) and rigid naphthalene diimides (NDIs) as electron-acceptors (A), meanwhile, this hybrid material displayed photochromism as well. The significant D-A anion-π interaction induced an additional through-space charge-transfer pathway. The resulting suitable D-A CT states can efficiently bridge the relatively large energy gap between the NDI-localized 1 π-π* and 3 π-π* states and thus trigger the ligand-localized phosphorescence (3 π-π*).
RESUMO
Three thermally activated delayed fluorescence cationic cuprous complexes [Cu(POP) (ECAF)]PF6 (1, POP = bis(2-diphenylphosphinophenyl)ether, ECAF = 9,9-bis(9-ethylcarbazol-3-yl)-4,5-diazafluorene), [Cu(POP) (EHCAF)]PF6 (2, EHCAF = 9,9-bis(9-ethylhexylcarbazol-3-yl)-4,5-diazafluorene), and [Cu(POP) (PCAF)]PF6 (3, PCAF = 9,9-bis(9-phenylcarbazaol-3-yl)-4,5-diazafluorene) with bipolar 4,5-diazafluorene ligand substituted by bis-carbazole have been successfully prepared, and their UV absorption, photoluminescent properties, and electrochemical behaviors were investigated. At room temperature, complexes 1, 2, and 3 exhibit efficient yellowish-green emission with peak maxima of 550, 549, and 556 nm, respectively, and lifetimes of 5.7 µs. In powder states, the quantum yields (ÏPL) of 22.4% for 1, 18.5% for 2, and 20.0% for 3, respectively, are found. These metal phosphors can be vacuum-evaporated and applied in the organic light-emitting diodes (OLEDs) of indium tin oxide/poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (40 nm)/4,4',4â³-tri(9-carbazoyl)triphenylamine (15 nm)/cuprous complexes (10 wt %): 1,3-bis(9-carbazolyl)benzene (30 nm)/1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene (50 nm)/LiF (0.5 nm)/Al (100 nm). Complex 1-based device D1 achieved a maximum luminance of 11â¯010 cd m-2, a current efficiency of 47.03 cd A-1, and an external quantum efficiency of 14.81%. The high electroluminescence efficiencies of these complexes are assumed to be due to their good thermal stabilities and capture of both singlet and triplet excitons. The research presented here provides a powerful tool toward highly efficient and cheap OLED devices.