Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Cell Commun Signal ; 22(1): 18, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195552

RESUMO

Non-alcoholic fatty liver disease (NAFLD) as a chronic disease especially in Western countries, is still a tough question in the clinical therapy. With the rising prevalence of various chronic diseases, liver transplantation is expected to be the most common therapy after the next 10 years. However, there is still no approved drug for NAFLD, and targeted therapy for NAFLD is urgent. Exosomes as a kind of extracellular vesicle are cell-derived nanovesicles, which play an essential role in intercellular communication. Due to complex cell-cell interactions in the liver, exosomes as therapeutic drugs or drug delivery vesicles may be involved in physiological or pathological processes in NAFLD. Compared with other nanomaterials, exosomes as a cell-free therapy, are not dependent on cell number limitation, which means can be administered safely in high doses. Apart from this, exosomes with the advantages of being low-toxic, high stability, and low-immunological are chosen for targeted therapy for many diseases. In this review, firstly we introduced the extracellular vesicles, including the biogenesis, composition, isolation and characterization, and fundamental function of extracellular vesicles. And then we discussed the modification of extracellular vesicles, cargo packing, and artificial exosomes. Finally, the extracellular vesicles for the therapies of NAFLD are summarized. Moreover, we highlight therapeutic approaches using exosomes in the clinical treatment of NAFLD, which provide valuable insights into targeting NAFLD in the clinical setting.


Assuntos
Exossomos , Vesículas Extracelulares , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/terapia , Obesidade/complicações , Obesidade/terapia
2.
J Pineal Res ; 76(4): e12963, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779971

RESUMO

Artificial light at night (ALAN) is an emerging environmental pollutant that threatens public health. Recently, ALAN has been identified as a risk factor for obesity; however, the role of ALAN and its light wavelength in hepatic lipid metabolic homeostasis remains undetermined. We showed that chronic dim (~5 lx) ALAN (dLAN) exposure significantly promoted hepatic lipid accumulation in obese or diabetic mice, with the most severe effect of blue light and little effect of green or red light. These metabolic phenotypes were attributed to blue rather than green or red dLAN interfering with hepatic lipid metabolism, especially lipogenesis and lipolysis. Further studies found that blue dLAN disrupted hepatic lipogenesis and lipolysis processes by inhibiting hepatic REV-ERBs. Mechanistically, feeding behavior mediated the regulation of dLAN on hepatic REV-ERBs. In addition, different effects of light wavelengths at night on liver REV-ERBs depended on the activation of the corticosterone (CORT)/glucocorticoid receptor (GR) axis. Blue dLAN could activate the CORT/GR axis significantly while other wavelengths could not. Notably, we demonstrated that exogenous melatonin could effectively inhibit hepatic lipid accumulation and restore the hepatic GR/REV-ERBs axis disrupted by blue dLAN. These findings demonstrate that dLAN promotes hepatic lipid accumulation in mice via a short-wavelength-dependent manner, and exogenous melatonin is a potential therapeutic approach. This study strengthens the relationship between ALAN and hepatic lipid metabolism and provides insights into directing ambient light.


Assuntos
Dieta Hiperlipídica , Homeostase , Luz , Metabolismo dos Lipídeos , Fígado , Melatonina , Animais , Melatonina/farmacologia , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos da radiação , Dieta Hiperlipídica/efeitos adversos , Homeostase/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Luz Azul
3.
Ecotoxicol Environ Saf ; 269: 115782, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056121

RESUMO

Aflatoxin B1 (AFB1) is a major food and feed pollutant that endangers public health. Previous studies have shown that exposure to AFB1 causes neurotoxicity in the body. However, the mechanism of neurotoxicity caused by AFB1 is not well understood, and finding a workable and practical method to safeguard animals from AFB1 toxicity is essential. This study confirmed that AFB1 caused endoplasmic reticulum stress (ER stress) and apoptosis in hippocampal neurons using C57BL/6 J mice and HT22 cells as models. In vitro experiments showed that the aryl hydrocarbon receptor (AHR) plays a significant role in the cytotoxicity of AFB1. Finally, we assessed how hesperetin protecting against the neurotoxicity caused by AFB1. Our findings demonstrated that AFB1 increased the levels of BAX and Cleaved-Caspase3 proteins, while decreasing the levels of BCL2 protein in the CA1 and CA3 regions of the hippocampus. The AFB1 increased the expression of AHR and activated nuclear translocation. It also elevated the expression levels of Chop, GRP78, p-IRE1/ Xbp1s, and p-PERK/p-EIF2a. Importantly, we also discovered for the first time that blocking AHR in HT22 cells dramatically reduced the level of ER stress and apoptosis caused by AFB1. In vivo and in vitro studies, supplementation of hesperetin effectively reversed AFB1-induced cytotoxicity. We have demonstrated that hesperetin effectively restored the imbalance in the GSH/GST system in HT22 cells treated with AFB1. Furthermore, we observed that elevated GSH levels facilitated the formation of AFB1-GSH complexes, which enhanced the excretion of AFB1. Therefore, hesperetin improves ER stress-induced apoptosis by reducing AFB1 activation of AHR.


Assuntos
Aflatoxina B1 , Apoptose , Hesperidina , Camundongos , Animais , Aflatoxina B1/toxicidade , Camundongos Endogâmicos C57BL , Neurônios , Hipocampo
4.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255808

RESUMO

Pregnancy is a highly intricate and delicate process, where inflammation during early stages may lead to pregnancy loss or defective implantation. Melatonin, primarily produced by the pineal gland, exerts several pharmacological effects. N6-methyladenosine (m6A) is the most prevalent mRNA modification in eukaryotes. This study aimed to investigate the association between melatonin and m6A during pregnancy and elucidate the underlying protective mechanism of melatonin. Melatonin was found to alleviate lipopolysaccharide (LPS)-induced reductions in the number of implantation sites. Additionally, it mitigated the activation of inflammation, autophagy, and apoptosis pathways, thereby protecting the pregnancy process in mice. The study also revealed that melatonin regulates uterine m6A methylation levels and counteracts abnormal changes in m6A modification of various genes following LPS stimulation. Furthermore, melatonin was shown to regulate m6A methylation through melatonin receptor 1B (MTNR1B) and subsequently modulate inflammation, autophagy, and apoptosis through m6A. In conclusion, our study demonstrates that melatonin protects pregnancy by influencing inflammation, autophagy, and apoptosis pathways in an m6A-dependent manner via MTNR1B. These findings provide valuable insights into the mechanisms underlying melatonin's protective effects during pregnancy and may have implications for potential therapeutic strategies in managing pregnancy-related complications.


Assuntos
Aborto Espontâneo , Adenina , Melatonina , Animais , Feminino , Camundongos , Gravidez , Adenina/análogos & derivados , Inflamação , Lipopolissacarídeos/toxicidade , Melatonina/farmacologia , Melatonina/uso terapêutico , Receptor MT2 de Melatonina/genética
5.
J Neuroinflammation ; 20(1): 23, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737776

RESUMO

BACKGROUND: The microbiota-gut-brain axis plays an important role in the development of depression. The aim of this study was to investigate the effects of 5-HT on cognitive function, learning and memory induced by chronic unforeseeable mild stress stimulation (CUMS) in female mice. CUMS mice and TPH2 KO mice were used in the study. Lactococcus lactis E001-B-8 fungus powder was orally administered to mice with CUMS. METHODS: We used the open field test, Morris water maze, tail suspension test and sucrose preference test to examine learning-related behaviours. In addition, AB-PAS staining, immunofluorescence, ELISA, qPCR, Western blotting and microbial sequencing were employed to address our hypotheses. RESULTS: The effect of CUMS was more obvious in female mice than in male mice. Compared with female CUMS mice, extracellular serotonin levels in TPH2 KO CUMS mice were significantly reduced, and cognitive dysfunction was aggravated. Increased hippocampal autophagy levels, decreased neurotransmitter levels, reduced oxidative stress damage, increased neuroinflammatory responses and disrupted gut flora were observed. Moreover, L. lactis E001-B-8 significantly improved the cognitive behaviour of mice. CONCLUSIONS: These results strongly suggest that L. lactis E001-B-8 but not FLX can alleviate rodent depressive and anxiety-like behaviours in response to CUMS, which is associated with the improvement of 5-HT metabolism and modulation of the gut microbiome composition.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Camundongos , Masculino , Feminino , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Serotonina/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Cognição , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Comportamento Animal
6.
J Pineal Res ; 75(1): e12874, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37057339

RESUMO

It is widely known that lack of sleep damages the skin. Therefore, it is necessary to explore the relationship between sleep deprivation and skin damage and to find effective treatments. We established a 28-day sleep restriction (SR) mice model simulating continuous long-term sleep loss. We found that SR would damage the barrier function of mice's skin, cause oxidative stress damage to the skin, weaken the oscillations of the skin's biological clock, and make the circadian rhythm of Bacteroides disappear. The circadian rhythm of short-chain fatty acids (SCFA) receptors in the skin was disordered. After melatonin supplementation, the skin damage caused by SR was improved, the oscillations of the biological clock were enhanced, the circadian rhythm of Bacteroides was restored, and the rhythm of the receptor GPR43 of propionic acid was restored. We speculated that the improving effect of melatonin may be mediated by propionic acid produced by the gut microbiota. We verified in vitro that propionic acid could improve the keratinocytes barrier function of oxidative damage. We then consumed the gut microbiota of mice through antibiotics and found that oral melatonin could not improve skin damage. Moreover, supplementing mice with propionic acid could improve skin damage. Our research showed that lack of sleep impaired skin barrier function. Oral melatonin could improve skin damage by restoring the circadian rhythm of Bacteroides and its propionic acid metabolite.


Assuntos
Microbioma Gastrointestinal , Melatonina , Animais , Camundongos , Melatonina/farmacologia , Melatonina/metabolismo , Propionatos/farmacologia , Sono , Ritmo Circadiano
7.
J Nanobiotechnology ; 21(1): 222, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438752

RESUMO

Ulcerative colitis (UC) is currently the most common inflammatory bowel disease (IBD). Due to its diverse and complex causes, there is no cure at present, and researchers are constantly exploring new therapies. In recent years, nano-selenium particle(SeNP) has attracted wide attention due to excellent biological activities. Therefore, in this study, for the first time, we used a natural polysaccharide, Eucommia ulmoides polysaccharide (EUP), modified SeNP to get EUP-SeNP with a size of about 170 nm, and its effect on 3% dextran sulphate sodium (DSS) induced colitis was explored. Our results showed that colon intestinal histology, intestinal mucosal barrier, inflammatory cytokines and intestinal microbiome composition were changed after EUP-SeNP treatment in colitis mice. Specifically, it was also shown that oral treatment of EUP-SeNP could relieve the degree of DSS-induced colitis in mice by restoring weight loss, reducing disease activity index (DAI), enhancing colon antioxidant capacity and regulating intestinal microbiome composition. In addition, we verified the mechanism in intestinal epithelial cell lines, showing that EUP-SeNP inhibited LPS-induced activation of the TRL-4/NF-κB signaling pathway in intestinal epithelial cell lines. To some extend, our study provides therapeutic reference for the treatment of IBD.


Assuntos
Colite , Eucommiaceae , Doenças Inflamatórias Intestinais , Selênio , Animais , Camundongos , Selênio/farmacologia , Selênio/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
8.
Ecotoxicol Environ Saf ; 250: 114488, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586168

RESUMO

In recent years, the damaging effects of night light pollution, one of the environmental pollutions, on memory has been attracting attention. However, the underlying molecular mechanisms by which light at night, especially blue light at night, impairs memory remains unclear. Here, a total of 42 C57BL6/J mice that exposed to no light at night, dim white light at night (dLAN-WL), or dim blue light at night (dLAN-BL) for 28 days. Behavioral data indicated that exposure to dLAN-BL resulted in severe recognition memory impairment, as evidenced by the reduced recognition index and discrimination index in the novel object recognition test. At the same time, we observed a decrease in plasma insulin levels. Consistent with these changes, we also observed that dLAN-BL reduced the number of neurons in the CA1, CA3 and DG regions of the hippocampus, up-regulated the mRNA expression levels of Bax, down-regulated the mRNA expression levels of Bcl-2, Bcl-xl and the protein expression level of pIRS1, pAKT, pGSK3ß, ß-catenin in the hippocampus. In vitro experiments, we found that insulin (10 nM) inhibited apoptosis and up-regulated the protein expression levels of pAKT, pGSK3ß, ß-catenin of HT22 cells induced by H2O2 (200 µM). However, these changes disappeared when the insulin receptors (IR) in HT22 cells were silenced. Taken together, our findings suggested that the impairment of memory in mice induced by dLAN-BL was mediated by insulin via the IR/IRS1/AKT/GSK3ß/ß-catenin pathway. DATA AVAILABILITY: All data generated or analyzed during this study are included in this published article.


Assuntos
Insulina , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insulina/metabolismo , Ritmo Circadiano , beta Catenina/genética , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Apoptose , RNA Mensageiro/metabolismo
9.
Int J Mol Sci ; 24(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36768693

RESUMO

To clarify the effect of monochromatic light on circadian rhythms of plasma insulin level and pancreatic clock gene expression and its mechanism, 216 newly hatched chicks were divided into three groups (intact, sham operation and pinealectomy) and were raised under white (WL), red (RL), green (GL) or blue (BL) light for 21 days. Their plasma and pancreas were sampled at six four-hour intervals. For circadian rhythm analysis, measurements of plasma melatonin, insulin, and clock gene expression (cClock, cBmal1, cBmal2, cCry1, cCry2, cPer2, and cPer3) were made. Plasma melatonin, insulin, and the pancreatic clock gene all expressed rhythmically in the presence of monochromatic light. Red light reduced the mesor and amplitude of plasma melatonin in comparison to green light. The mesor and amplitude of the pancreatic clock gene in chickens exposed to red light were dramatically reduced, which is consistent with the drop in plasma melatonin levels. Red light, on the other hand, clearly raised the level of plasma insulin via raising the expression of cVamp2, but not cInsulin. After the pineal gland was removed, the circadian expressions of plasma melatonin and pancreatic clock gene were significantly reduced, but the plasma insulin level and the pancreatic cVamp2 expression were obviously increased, resulting in the disappearance of differences in insulin level and cVamp2 expression in the monochromatic light groups. Therefore, we hypothesize that melatonin may be crucial in the effect of monochromatic light on the circadian rhythm of plasma insulin level by influencing the expression of clock gene in chicken pancreas.


Assuntos
Insulinas , Melatonina , Glândula Pineal , Animais , Melatonina/metabolismo , Galinhas/genética , Galinhas/metabolismo , Glândula Pineal/metabolismo , Ritmo Circadiano/genética , Hormônios Pancreáticos/metabolismo , Pâncreas/metabolismo , Expressão Gênica , Insulinas/genética
10.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768725

RESUMO

The ubiquity of biological rhythms in life implies that it results from selection in the evolutionary process. The origin of the biological clock has two possible hypotheses: the selective pressure hypothesis of the oxidative stress cycle and the light evasion hypothesis. Moreover, the biological clock gives life higher adaptability. Two biological clock mechanisms have been discovered: the negative feedback loop of transcription-translation (TTFL) and the post-translational oscillation mechanism (PTO). The TTFL mechanism is the most classic and relatively conservative circadian clock oscillation mechanism, commonly found in eukaryotes. We have introduced the TTFL mechanism of the classical model organisms. However, the biological clock of prokaryotes is based on the PTO mechanism. The Peroxiredoxin (PRX or PRDX) protein-based PTO mechanism circadian clock widely existing in eukaryotic and prokaryotic life is considered a more conservative oscillation mechanism. The coexistence of the PTO and TTFL mechanisms in eukaryotes prompted us to explain the relationship between the two. Finally, we speculated that there might be a driving force for the evolution of the biological clock. The biological clock may have an evolutionary trend from the PTO mechanism to the TTFL mechanism, resulting from the evolution of organisms adapting to the environment.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Proteínas de Bactérias , Relógios Circadianos/genética , Eucariotos , Transcrição Gênica , Biossíntese de Proteínas
11.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37629009

RESUMO

Chronic psychological stress affects the health of humans and animals (especially females or pregnant bodies). In this study, a stress-induced model was established by placing eight-week-old female and pregnant mice in centrifuge tubes for 4 h to determine whether chronic stress affects the intestinal mucosal barrier and microbiota composition of pregnant mice. Compared with the control group, we found that norepinephrine (NE), corticosterone (CORT), and estradiol (E2) in plasma increased significantly in the stress group. We then observed a decreased down-regulation of anti-inflammatory cytokines and up-regulation of pro-inflammatory cytokines, which resulted in colonic mucosal injury, including a reduced number of goblet cells, proliferating cell nuclear antigen-positive cells, caspase-3, and expression of tight junction mRNA and protein. Moreover, the diversity and richness of the colonic microbiota decreased in pregnant mice. Bacteroidetes decreased, and pernicious bacteria were markedly increased. At last, we found E2 protects the intestinal epithelial cells after H2O2 treatment. Results suggested that 25 pg/mL E2 provides better protection for intestinal barrier after chronic stress, which greatly affected the intestinal mucosal barrier and altered the colonic microbiota composition.


Assuntos
Peróxido de Hidrogênio , Intestinos , Humanos , Gravidez , Feminino , Animais , Camundongos , Estrogênios , Inflamação , Citocinas
12.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445914

RESUMO

Animals are required to handle daily massive amounts of information in an ever-changing environment, and the resulting memories and experiences determine their survival and development, which is critical for adaptive evolution. However, intrinsic forgetting, which actively deletes irrelevant information, is equally important for memory acquisition and consolidation. Recently, it has been shown that Rac1 activity plays a key role in intrinsic forgetting, maintaining the balance of the brain's memory management system in a controlled manner. In addition, dysfunctions of Rac1-dependent intrinsic forgetting may contribute to memory deficits in neurological and neurodegenerative diseases. Here, these new findings will provide insights into the neurobiology of memory and forgetting, pathological mechanisms and potential therapies for brain disorders that alter intrinsic forgetting mechanisms.


Assuntos
Encefalopatias , Memória , Animais , Transtornos da Memória , Encéfalo
13.
J Sci Food Agric ; 103(3): 1342-1354, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36151767

RESUMO

BACKGROUND: The aim of this study was to investigate the effects of different doses of chicken spleen transfer factor (TF) on the structure of intestinal epithelial cells in different age groups. One-day-old White Leghorns laying hens were randomly divided into four groups: three groups were administered TF at different dosages (0.10, 0.25 or 1.00 mL) and a fourth group was set as control (administered saline, 1.00 mL). Using hematoxylin and eosin staining, high-throughput sequencing, microbiota analysis, quantitative polymerase reaction and western blotting. RESULTS: We measured the effects of different doses of TF on the following: intestinal mucosal epithelial tissue morphology, intestinal mucosal epithelial barrier-related gene expression profiles, and intestinal epithelial tight junction gene protein levels. The collected data show that TF can improve the absorption of nutrients by increasing villus height and crypt depth, and regulate intestinal flora disorders. Furthermore, we verified that the expression of the claudin and occludin tight junctions between intestinal epithelial cells was increased with TF. this research is very important for focusing on the structure and gene expression of intestinal tissues. CONCLUSION: The results provide a scientific rationale for feeding and nutrition programs for green and healthy farming, as well as technical support to improve the production efficiency of the livestock and poultry breeding industry. © 2022 Society of Chemical Industry.


Assuntos
Galinhas , Fator de Transferência , Animais , Feminino , Fator de Transferência/metabolismo , Fator de Transferência/farmacologia , Galinhas/genética , Baço , Mucosa Intestinal/metabolismo , Células Epiteliais/metabolismo
14.
Curr Issues Mol Biol ; 44(2): 609-625, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35723328

RESUMO

Lack of sleep time is a menace to modern people, and it leads to chronic diseases and mental illnesses. Circadian processes control sleep, but little is known about how sleep affects the circadian system. Therefore, we performed a 28-day sleep restriction (SR) treatment in mice. Sleep restriction disrupted the clock genes' circadian rhythm. The circadian rhythms of the Cry1 and Per1/2/3 genes disappeared. The acrophase of the clock genes (Bmal1, Clock, Rev-erbα, and Rorß) that still had a circadian rhythm was advanced, while the acrophase of negative clock gene Cry2 was delayed. Clock genes' upstream signals ERK and EIFs also had circadian rhythm disorders. Accompanied by changes in the central oscillator, the plasma output signal (melatonin, corticosterone, IL-6, and TNF-α) had an advanced acrophase. While the melatonin mesor was decreased, the corticosterone, IL-6, and TNF-α mesor was increased. Our results indicated that chronic sleep loss could disrupt the circadian rhythm of the central clock through ERK and EIFs and affect the output signal downstream of the core biological clock.

15.
Ecotoxicol Environ Saf ; 239: 113625, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35588616

RESUMO

Irregular light exposure is a newly identified environmental factor for the progression of lipid metabolism; however, the specific effect of light color exposure on lipid homeostasis remains unknown. Herein, 4-week-old male C57BL/6 J mice (n = 12) fed a high-fat diet (HFD) were exposed to a standard 12-h light: 12-h dark cycle (LD-WF) and a 24-h continuous monochromatic blue light (LL-BF), green light (LL-GF), or white light (LL-WF) condition for 12 weeks. LL-BF interfered with the expression of circadian genes in the hypothalamus and upregulated the plasma corticosterone (CORT) levels (p < 0.05) compared with LD-WF. Along with elevation of the CORT level, LL-BF enhanced glucocorticoid receptor synthesis, increased the Hsp90 mRNA level, reduced the antioxidant capacity, increased the production of ROS and MDA, and reduced the Pgc-1α mRNA level in the liver (p < 0.05). Furthermore, LL-BF disrupted the hepatic expression levels of genes involved in lipid metabolism, Acc and Hl, which further aggravated the hepatic steatosis status and significantly increased the liver pathological scores, TG, TC, IL-6, and TNF-α levels (p < 0.05). LL-BF consistently increased the body weight and incidence of dyslipidemia and lipid deposition. However, no difference was observed between LL-BF and LL-WF (p > 0.05). Surprisingly, LL-GF did not show any changes induced by LL-BF and LL-WF, and contrary to LL-BF, LL-GF and LD-WF showed no significantly differing changes (p > 0.05). Taken together, exposure to monochromatic blue light but not green light is associated with continuous light-aggravated hepatic steatosis in HFD-fed mice. The effect of continuous blue light exposure may be attributed to the disturbance of biological rhythm, increase in CORT secretion, induction of oxidative stress, and interference of the Acc and Hl levels in the liver.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso , Animais , Corticosterona , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/metabolismo , Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , RNA Mensageiro/metabolismo
16.
BMC Med Educ ; 22(1): 813, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443714

RESUMO

BACKGROUND: The lack of interaction and communication in pharmacology courses, especially since the onset of the coronavirus disease 2019 (COVID-19) pandemic, which required a fast shift to remote learning at medical schools, leads to an unsatisfactory learning outcome. New interactive teaching approaches are required to improve pharmacology learning attention and interaction in remote education and traditional classrooms. METHODS: We introduced bullet screens to pharmacology teaching. Then, a survey was distributed to first-, second- and third-year pre-clinical undergraduate medical and nursing students at the Shanghai Jiao Tong University School of Medicine from November 2020 to March 2022. We evaluated the essential features, instructional effectiveness, and entertainment value of bullet screens. Responses to structured and open-ended questions about the strengths and weaknesses of the bullet screen and overall thoughts were coded and compared between medical and nursing students. RESULTS: In terms of essential features, bullet screens have a high degree of acceptability among students, and this novel instructional style conveniently increased classroom interaction. Considering instructional effectiveness, bullet screen may stimulate students' in-depth thinking. Meanwhile, students tended to use bullet-screen comments as a way to express their support rather than to make additional comments or to express their different viewpoints. The entertainment value of bullet screen was noteworthy. The lack of ideas might lead to relative differences between medical and nursing students, indicating that guiding the appropriate use of bullet screen is necessary. CONCLUSIONS: The bullet screen may be popularized as an auxiliary teaching approach to promote interaction between teachers and students in the classroom as well as during remote education. It is an interesting and beneficial tool in pharmacology courses, yet there are several aspects of this device that should be improved for popularization.


Assuntos
Educação de Graduação em Medicina , Farmacologia , Humanos , China , COVID-19 , Medicina , Faculdades de Medicina , Farmacologia/educação
17.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054932

RESUMO

The rapid growth of obesity worldwide has made it a major health problem, while the dramatic increase in the prevalence of obesity has had a significant impact on the magnitude of chronic kidney disease (CKD), especially in developing countries. A vast amount of researchers have reported a strong relationship between obesity and chronic kidney disease, and obesity can serve as an independent risk factor for kidney disease. The histological changes of kidneys in obesity-induced renal injury include glomerular or tubular hypertrophy, focal segmental glomerulosclerosis or bulbous sclerosis. Furthermore, inflammation, renal hemodynamic changes, insulin resistance and lipid metabolism disorders are all involved in the development and progression of obesity-induced nephropathy. However, there is no targeted treatment for obesity-related kidney disease. In this review, RAS inhibitors, SGLT2 inhibitors and melatonin would be presented to treat obesity-induced kidney injury. Furthermore, we concluded that melatonin can protect the kidney damage caused by obesity by inhibiting inflammation and oxidative stress, revealing its therapeutic potential.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Desenvolvimento de Medicamentos , Nefropatias/etiologia , Obesidade/complicações , Animais , Citocinas/metabolismo , Gerenciamento Clínico , Humanos , Mediadores da Inflamação , Resistência à Insulina , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Túbulos Renais , Terapia de Alvo Molecular/métodos , Estresse Oxidativo , Sistema Renina-Angiotensina
18.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430894

RESUMO

Alzheimer's disease (AD) is a global concern and has become a major public health event affecting human health. Insulin is a metabolic hormone secreted mainly by the peripheral tissue pancreas. In recent years, more and more evidence has proved that insulin regulates various functions of the brain. The hippocampus, one of the earliest brain regions affected by AD, is widely distributed with insulin receptors. Studies have shown that type 2 diabetes mellitus, characterized by insulin resistance, is closely related to AD, which has drawn extensive attention to the relationship between hippocampal insulin signaling and AD. Therefore, we provide an overview of intranasal insulin administration on memory and its underlying mechanism. We also highlight the molecular link between hippocampal insulin resistance and AD and provide a theoretical basis for finding new therapeutic targets for AD in clinical practice.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Doença de Alzheimer/metabolismo , Insulina/metabolismo , Hipocampo/metabolismo , Insulina Regular Humana/uso terapêutico
19.
Stress ; 24(5): 514-528, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33280472

RESUMO

During pregnancy, uterus undergoes the environment adaptation as part of a program of development. In the world, one in four people worldwide suffer from mental illness, especially pregnant women. ß-Adrenergic receptor (ß-AR) is an important regulator that converts environmental stimuli into intracellular signals in mice uterus. CD-1 (ICR) mice undergone restraint stress, which was a case in model to simulate the psychological stress. The plasma and implantation sites in uterus were obtained and examined. PCR analysis demonstrated that ß2-AR expression levels in embryo day (E) 3, 5 and 7 were kept at a significantly higher level (p < 0.05) under restraint stress and higher than ß1-AR and ß3-AR in different gestation ages. The ß2-AR protein levels were obviously increased (p < 0.05) due to the markedly elevated norepinephrine (NE) concentration (p < 0.05). In our previous study, restraint stress can induce the apoptosis and inflammation. Also, the matrix metalloprotein-9 (MMP-9) was decreased significantly (p < 0.05) under restraint stress. Meanwhile, Caspase3, p-NF-κB p65 and p-ERK1/2 were obviously increased (p < 0.05) in the work. In vitro studies showed that the p-ERK1/2 and Caspase-3 levels were raised (p < 0.05) after ß2-AR was activated. However, they were decreased when PKA was blocked. The protein levels of Caspase-3 were reduced when ERK and NF-κB were blocked (p < 0.05). In conclusion, the ß2-AR/cAMP/PKA pathway promoted apoptosis and affected the development of the uterus through the ERK and NF-κB signaling pathway. The findings of this study may provide evidence for female reproduction under psychological stress.


Assuntos
Receptores Adrenérgicos beta 2 , Restrição Física , Estresse Psicológico , Animais , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico , Feminino , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Receptores Adrenérgicos beta 2/genética , Transdução de Sinais
20.
Endocr J ; 68(4): 485-502, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33408312

RESUMO

Female, especially for pregnant female, are vulnerable to psychological stress. The morphology and metabolism of the maternal intestine are both obviously changed during pregnancy, thus making intestinal health status more fragile under psychological stress. The aim of the present study was to investigate the role of CRH and CRHR1 in the pregnant maternal intestine under psychological stress, thus exploring the mechanism of psychological stress in the pregnant maternal intestine. Bama miniature pigs were divided into the control and restraint stress groups from the first day of pregnancy. After restraint stress treatment for 18 consecutive days (D18), the plasma, duodenum, jejunum, ileum and colon were collected for study. Pregnant Bama miniature pigs subjected to restraint stress had significantly elevated CRH, adrenocorticotropic hormone (ACTH) and cortisol (COR) levels in plasma. Consistent with the increase in CRH levels, we observed enhanced oxidative stress levels in the intestine, which resulted in intestinal mucosal injury, including impaired intestinal morphology, a reduced number of goblet cells and proliferating cell nuclear antigen-positive cells, decreased expression of MUC2 and tight junctions, and elevated expression of CRHR1 and caspase-3. Moreover, exogenous CRH could directly promote IPEC-J2 cell apoptosis and influence its cell cycle (S and G2 phase) through CRHR1, and antalarmin could alleviate this phenomenon. Therefore, our results illustrated that the intestinal dysfunction of pregnant Bama miniature pigs was caused by restraint stress, and these changes were associated with the enhanced expression of CRH and CRHR1 in the intestine.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Mucosa Intestinal/metabolismo , Restrição Física , Estresse Psicológico/metabolismo , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Sobrevivência Celular/fisiologia , Células Epiteliais/metabolismo , Feminino , Gravidez , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA