Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Drug Resist Updat ; 76: 101112, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924997

RESUMO

AIMS: Despite aggressive treatment, the recurrence of glioma is an inevitable occurrence, leading to unsatisfactory clinical outcomes. A plausible explanation for this phenomenon is the phenotypic alterations that glioma cells undergo aggressive therapies, such as TMZ-therapy. However, the underlying mechanisms behind these changes are not well understood. METHODS: The TMZ chemotherapy resistance model was employed to assess the expression of intercellular adhesion molecule-1 (ICAM1) in both in vitro and in vivo settings. The potential role of ICAM1 in regulating TMZ chemotherapy resistance was investigated through knockout and overexpression techniques. Furthermore, the mechanism underlying ICAM1-mediated TMZ chemotherapy resistance was examined using diverse molecular biological methods, and the lipid raft protein was subsequently isolated to investigate the cellular subcomponents where ICAM1 operates. RESULTS: Acquired TMZ resistant (TMZ-R) glioma models heightened production of intercellular adhesion molecule-1 (ICAM1) in TMZ-R glioma cells. Additionally, we observed a significant suppression of TMZ-R glioma proliferation upon inhibition of ICAM1, which was attributed to the enhanced intracellular accumulation of TMZ. Our findings provide evidence supporting the role of ICAM1, a proinflammatory marker, in promoting the expression of ABCB1 on the cell membrane of TMZ-resistant cells. We have elucidated the mechanistic pathway by which ICAM1 modulates phosphorylated moesin, leading to an increase in ABCB1 expression on the membrane. Furthermore, our research has revealed that the regulation of moesin by ICAM1 was instrumental in facilitating the assembly of ABCB1 exclusively on the lipid raft of the membrane. CONCLUSIONS: Our findings suggest that ICAM1 is an important mediator in TMZ-resistant gliomas and targeting ICAM1 may provide a new strategy for enhancing the efficacy of TMZ therapy against glioma.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioma , Molécula 1 de Adesão Intercelular , Temozolomida , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/patologia , Glioma/genética , Glioma/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Humanos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Temozolomida/farmacologia , Linhagem Celular Tumoral , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Camundongos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos
2.
J Am Chem Soc ; 146(15): 10342-10356, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574341

RESUMO

In acidic HZSM-5 zeolite, the reactivity of a methanol molecule interacting with the zeolite proton is amenable to modification via coadsorbing a stochiometric amount of an electron density donor E to form the [(E)(CH3OH)(HZ)] complex. The rate of the methanol in this complex undergoing dehydration to dimethyl ether was determined for a series of E with proton affinity (PA) ranging from 659 kJ mol-1 for C6F6 to 825 kJ mol-1 for C4H8O and was found to follow the expression: Ln(Rate) - Ln(RateN2) = ß(PA - PAN2)γ, where E = N2 is the reference and ß and γ are constants. This trend is probably due to the increased stability of the solvated proton in the [(E)(CH3OH)(HZ)] complex with increasing PA. Importantly, this is also observed in steady-state flow reactions when stoichiometric quantities of E are preadsorbed on the zeolite. As demonstrated with E being D2O, the effect on methanol reactivity diminishes when E is present in excess of the [(E)(CH3OH)(HZ)] complex. It is proposed that the methanol dehydration reaction involves [(E)(CH3OH)(CH3OH)(HZ)] as the transition state, which is supported by the isotopologue distribution of the initial dimethyl ether formed when a flow of CH3OH was passed over ZSM-5 containing one CD3OH per zeolite proton. The implication of this on the mechanism of catalytic methanol dehydration on HZSM-5 is discussed.

3.
Anal Chem ; 96(4): 1488-1497, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232037

RESUMO

While engineered DNA nanoframeworks have been extensively exploited for delivery of diagnostic and therapeutic regents, DNA tiling-based DNA frameworks amenable to applications in living systems lag much behind. In this contribution, by developing a Y-shaped backbone-based DNA tiling technique, we assemble Y-shaped backbone-rigidified supersized DNA tetrahedrons (RDT) with 100% efficiency for precisely targeted tumor therapy. RDT displays unparalleled rigidness and unmatched resistance to nuclease degradation so that it almost does not deform under the force exerted by the atomic force microscopy tip, and the residual amount is not less than 90% upon incubating in biological media for 24 h, displaying at least 11.6 times enhanced degradation resistance. Without any targeting ligand, RDT enters the cancer cell in a targeted manner, and internalization specificity is up to 15.8. Moreover, 77% of RDT objects remain intact within living cells for 14 h. The drug loading content of RDT is improved by 4-8 times, and RDT almost 100% eliminates the unintended drug leakage in a stimulated physiological medium. Once systemically administrated into HeLa tumor-bearing mouse models, doxorubicin-loaded RDTs preferentially accumulate in tumor sites and efficiently suppress tumor growth without detectable off-target toxicity. The Y-DNA tiling technique offers invaluable insights into the development of structural DNA nanotechnology for precise medicine.


Assuntos
DNA , Neoplasias , Humanos , Animais , Camundongos , Microscopia de Força Atômica , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Células HeLa , Neoplasias/tratamento farmacológico
4.
BMC Med ; 22(1): 90, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433226

RESUMO

BACKGROUND: While circulating metabolites have been increasingly linked to cancer risk, the causality underlying these associations remains largely uninterrogated. METHODS: We conducted a comprehensive 2-sample Mendelian randomization (MR) study to evaluate the potential causal relationship between 913 plasma metabolites and the risk of seven cancers among European-ancestry individuals. Data on variant-metabolite associations were obtained from a genome-wide association study (GWAS) of plasma metabolites among 14,296 subjects. Data on variant-cancer associations were gathered from large-scale GWAS consortia for breast (N = 266,081), colorectal (N = 185,616), lung (N = 85,716), ovarian (N = 63,347), prostate (N = 140,306), renal cell (N = 31,190), and testicular germ cell (N = 28,135) cancers. MR analyses were performed with the inverse variance-weighted (IVW) method as the primary strategy to identify significant associations at Bonferroni-corrected P < 0.05 for each cancer type separately. Significant associations were subjected to additional scrutiny via weighted median MR, Egger regression, MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO), and reverse MR analyses. Replication analyses were performed using an independent dataset from a plasma metabolite GWAS including 8,129 participants of European ancestry. RESULTS: We identified 94 significant associations, suggesting putative causal associations between 66 distinct plasma metabolites and the risk of seven cancers. Remarkably, 68.2% (45) of these metabolites were each associated with the risk of a specific cancer. Among the 66 metabolites, O-methylcatechol sulfate and 4-vinylphenol sulfate demonstrated the most pronounced positive and negative associations with cancer risk, respectively. Genetically proxied plasma levels of these two metabolites were significantly associated with the risk of lung cancer and renal cell cancer, with an odds ratio and 95% confidence interval of 2.81 (2.33-3.37) and 0.49 (0.40-0.61), respectively. None of these 94 associations was biased by weak instruments, horizontal pleiotropy, or reverse causation. Further, 64 of these 94 were eligible for replication analyses, and 54 (84.4%) showed P < 0.05 with association patterns consistent with those shown in primary analyses. CONCLUSIONS: Our study unveils plausible causal relationships between 66 plasma metabolites and cancer risk, expanding our understanding of the role of circulating metabolites in cancer genetics and etiology. These findings hold promise for enhancing cancer risk assessment and prevention strategies, meriting further exploration.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Pulmonares , Masculino , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Neoplasias Pulmonares/epidemiologia , Neoplasias Pulmonares/genética
5.
Small ; 20(27): e2402037, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38511536

RESUMO

Enhancing the low-potential capacity of anode materials is significant in boosting the operating voltage of full-cells and constructing high energy-density energy storage devices. Graphitic carbons exhibit outstanding low-potential potassium storage performance, but show a low K+ diffusion kinetics. Herein, in situ defect engineering in graphitic nanocarbon is achieved by an atomic self-activation strategy to boost the accessible low-voltage insertion. Graphitic carbon layers grow on nanoscale-nickel to form the graphitic nanosphere with short-range ordered microcrystalline due to nickel graphitization catalyst. Meanwhile, the widely distributed K+ in the precursor induces the activation of surrounding carbon atoms to in situ generate carbon vacancies as channels. The graphite microcrystals with defect channels realize reversible K+ intercalation at low-potential and accessible ion diffusion kinetics, contributing to high reversible capacity (209 mAh g-1 at 0.05 A g-1 under 0.8 V) and rate capacity (103.2 mAh g-1 at 1 A g-1). The full-cell with Prussian blue cathode and graphitic nanocarbon anode maintains an obvious working platform at ca. 3.0 V. This work provides a strategy for the in situ design of carbon anode materials and gives insights into the potassium storage mechanism at low-potential for high-performance full-cells.

6.
New Phytol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238152

RESUMO

Long terminal repeat retroelements (LTR-REs) have profound effects on DNA methylation and gene regulation. Despite the vast abundance of LTR-REs in the genome of Moso bamboo (Phyllostachys edulis), an industrial crop in underdeveloped countries, their precise implication of the LTR-RE mobility in stress response and development remains unknown. We investigated the RNA and DNA products of LTR-REs in Moso bamboo under various developmental stages and stressful conditions. Surprisingly, our analyses identified thousands of active LTR-REs, particularly those located near genes involved in stress response and developmental regulation. These genes adjacent to active LTR-REs exhibited an increased expression under stress and are associated with reduced DNA methylation that is likely affected by the induced LTR-REs. Moreover, the analyses of simultaneous mapping of insertions and DNA methylation showed that the LTR-REs effectively alter the epigenetic status of the genomic regions where they inserted, and concomitantly their transcriptional competence which might impact the stress resilience and growth of the host. Our work unveils the unusually strong LTR-RE mobility in Moso bamboo and its close association with (epi)genetic changes, which supports the co-evolution of the parasitic DNAs and host genome in attaining stress tolerance and developmental robustness.

7.
J Med Virol ; 96(2): e29466, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344929

RESUMO

Talaromyces marneffei (TM) immune evasion is an important factor leading to the high mortality rate of Penicilliosis marneffei. N6 -methyladenosine (m6 A) plays important roles in host immune response to various pathogen infections, yet its role in TM and HIV/TM coinfection remains largely unexplored. Here we reported genome-wide transcriptional m6 A profiles of TM mono-infection and HIV/TM coinfection. Our finding revealed dynamic alterations in global m6 A levels and upregulation of the m6 A reader YTH N6 -methyladenosine RNA binding protein C2 (YTHDC2) in TM-infected macrophages. Knockdown of YTHDC2 in TM-infected cells showed an elevated expression of TLR2 through m6 A-dependence, along with upregulation of TNF-α and IL1-ß. Overall, we characterized the m6 A profiles of the host and fungus before and after TM infection, and demonstrated that YTHDC2 mediates the key m6 A site of TLR2 to exert its function. These findings provide new insights into the underlying mechanisms and novel therapeutic approaches for TM diseases.


Assuntos
Coinfecção , Infecções por HIV , Micoses , Humanos , Receptor 2 Toll-Like/genética , RNA Helicases
8.
BMC Cancer ; 24(1): 1148, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277718

RESUMO

BACKGROUND: Breast cancer (BC) poses significant burdens on women globally. While past research suggests a potential link between bone mineral density (BMD) and BC risk, findings remain inconsistent. Our study aims to elucidate the causal relationship between BMD and BC in East Asians using bidirectional Mendelian randomization (MR). METHODS: Genetic association data for bone mineral density T-scores (BMD-T) and Z-scores (BMD-Z) (Sample size = 92,615) and BC from two different sources (Sample size1 = 98,283; Sample size2 = 79,550) were collected from publicly available genome-wide association studies (GWAS). Single-nucleotide polymorphisms (SNPs) associated with BMD-T and BMD-Z as phenotype-related instrumental variables (IVs) were used, with BC as the outcome. As the primary means of causal inference, the inverse variance weighted (IVW) approach was employed. Heterogeneity analysis was conducted using Cochran's Q test, while MR-Egger regression analysis was implemented to assess the pleiotropic effects of the IVs. Sensitivity analyses were performed using methods such as MR-Egger, weighted median, and weighted mode to analyze the robustness and reliability of the results. The MR-PRESSO method and the RadialMR were used to detect and remove outliers. The PhenoScanner V2 website was utilized to exclude confounding factors shared between BMD and BC. Besides, the Bonferroni correction was also used to adjust the significance threshold. Then, the meta-analysis method was applied to combine the MR analysis results from the two BC sources. Finally, a reverse MR analysis was conducted. RESULTS: The results of the IVW method were consolidated through meta-analysis, revealing a positive correlation between genetically predicted BMD-T ([Formula: see text], [Formula: see text], [Formula: see text]) and BMD-Z ([Formula: see text],[Formula: see text], [Formula: see text]) with increased BC risk. The Cochran's [Formula: see text] test and MR-Egger regression suggested that neither of these causal relationships was affected by heterogeneity or horizontal pleiotropy. The sensitivity analyses supported the IVW results, indicating the robustness of the findings. Reverse MR analysis showed no causal relationship between BC and BMD. CONCLUSION: Our MR study results provide evidence for the causal relationship between BMD and BC risk in East Asian populations, suggesting that BMD screening is of great significance in detecting and preventing BC.


Assuntos
Povo Asiático , Densidade Óssea , Neoplasias da Mama , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Densidade Óssea/genética , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/epidemiologia , Povo Asiático/genética , Predisposição Genética para Doença , Fatores de Risco , Ásia Oriental/epidemiologia , População do Leste Asiático
9.
J Oral Maxillofac Surg ; 82(3): 314-324, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37832596

RESUMO

BACKGROUND: Autologous tooth transplantation requires precise surgical guide design, involving manual tracing of donor tooth contours based on patient cone-beam computed tomography (CBCT) scans. While manual corrections are time-consuming and prone to human errors, deep learning-based approaches show promise in reducing labor and time costs while minimizing errors. However, the application of deep learning techniques in this particular field is yet to be investigated. PURPOSE: We aimed to assess the feasibility of replacing the traditional design pipeline with a deep learning-enabled autologous tooth transplantation guide design pipeline. STUDY DESIGN, SETTING, SAMPLE: This retrospective cross-sectional study used 79 CBCT images collected at the Guangzhou Medical University Hospital between October 2022 and March 2023. Following preprocessing, a total of 5,070 region of interest images were extracted from 79 CBCT images. PREDICTOR VARIABLE: Autologous tooth transplantation guide design pipelines, either based on traditional manual design or deep learning-based design. MAIN OUTCOME VARIABLE: The main outcome variable was the error between the reconstructed model and the gold standard benchmark. We used the third molar extracted clinically as the gold standard and leveraged it as the benchmark for evaluating our reconstructed models from different design pipelines. Both trueness and accuracy were used to evaluate this error. Trueness was assessed using the root mean square (RMS), and accuracy was measured using the standard deviation. The secondary outcome variable was the pipeline efficiency, assessed based on the time cost. Time cost refers to the amount of time required to acquire the third molar model using the pipeline. ANALYSES: Data were analyzed using the Kruskal-Wallis test. Statistical significance was set at P < .05. RESULTS: In the surface matching comparison for different reconstructed models, the deep learning group achieved the lowest RMS value (0.335 ± 0.066 mm). There were no significant differences in RMS values between manual design by a senior doctor and deep learning-based design (P = .688), and the standard deviation values did not differ among the 3 groups (P = .103). The deep learning-based design pipeline (0.017 ± 0.001 minutes) provided a faster assessment compared to the manual design pipeline by both senior (19.676 ± 2.386 minutes) and junior doctors (30.613 ± 6.571 minutes) (P < .001). CONCLUSIONS AND RELEVANCE: The deep learning-based automatic pipeline exhibited similar performance in surgical guide design for autogenous tooth transplantation compared to manual design by senior doctors, and it minimized time costs.


Assuntos
Aprendizado Profundo , Dente , Humanos , Transplante Autólogo , Estudos Retrospectivos , Estudos Transversais , Dente/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos
10.
Int J Biometeorol ; 68(8): 1649-1662, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38689055

RESUMO

The outdoor thermal comfort (OTC) of children is more specific than that of adults, and the complex influence of outdoor activity spaces on children's thermal comfort warrants further investigation. To investigate the outdoor thermal comfort baseline (OTCB) of children in Hangzhou and explore the thermal impact of outdoor surfaces on children, a survey was conducted in six typical outdoor activity spaces in Hangzhou, China, during spring and summer utilizing physical measurements, questionnaire surveys, and the universal thermal climate index (UTCI). This study analyzed the differences in thermal perception among children in Hangzhou in different seasons, their OTCB, and the impact of surface reflectance (Rs) on children's OTC. The results indicated the following: 1) In spring, children in Hangzhou generally felt comfortable, but their discomfort with heat noticeably increased in summer. 2) The neutral UTCIs (NUTCIs) for Hangzhou children were 11.6 °C (spring) and 27.7 °C (summer), and the NUTCI ranges (NUTCIRs) were 9.7-17.5 °C (spring) and 25.7-30.0 °C (summer); additionally, the thermal acceptability ranges (TARs) were 13.2-25.2 °C (spring) and 11.8-34.8 °C (summer). 3) A high Rs made children feel more uncomfortable with heat, which was primarily due to the space's total shortwave and longwave radiation, which peaked between 14:00 and 15:00. 4) Based on the research findings, corresponding bioclimatic design strategies were proposed. Recommendations include using high Rs underlays with shading, composite underlays, or the future adoption of thermochromic coatings. Keeping permeable underlays moist is essential for activating their cooling mechanisms. Fundamental safety measures are imperative. This study provides valuable data for urban planners and landscape designers to create public spaces suitable for children's outdoor activities, contributing to a harmonious and unified living environment.


Assuntos
Estações do Ano , Sensação Térmica , Humanos , China , Criança , Feminino , Masculino , Temperatura , Temperatura Alta , Adolescente
11.
Ann Rheum Dis ; 82(3): 416-427, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36109143

RESUMO

OBJECTIVE: Increasing evidence suggests that impaired cartilage is a substantial risk factor for the progression from hyperuricaemia to gout. Since the relationship between cartilage matrix protein and gout flares remains unclear, we investigated its role in monosodium urate (MSU) crystallisation and following inflammation. METHODS: Briefly, we screened for cartilage matrix in synovial fluid from gouty arthritis patients with cartilage injuries. After identifying a correlation between crystals and matrix molecules, we conducted image analysis and classification of crystal phenotypes according to their morphology. We then evaluated the differences between the cartilage matrix protein-MSU complex and the pure MSU crystal in their interaction with immune cells and identified the related signalling pathway. RESULTS: Type II collagen (CII) was found to be enriched around MSU crystals in synovial fluid after cartilage injury. Imaging analysis revealed that CII regulated the morphology of single crystals and the alignment of crystal bows in the co-crystalline system, leading to greater phagocytosis and oxidative stress in macrophages. Furthermore, CII upregulated MSU-induced chemokine and proinflammatory cytokine expression in macrophages, thereby promoting the recruitment of leucocytes. Mechanistically, CII enhanced MSU-mediated inflammation by activating the integrin ß1(ITGB1)-dependent TLR2/4-NF-κB signal pathway. CONCLUSION: Our study demonstrates that the release of CII and protein-crystal adsorption modifies the crystal profile and promotes the early immune response in MSU-mediated inflammation. These findings open up a new path for understanding the relationship between cartilage injuries and the early immune response in gout flares.


Assuntos
Artrite Gotosa , Gota , Humanos , Artrite Gotosa/metabolismo , Ácido Úrico , Colágeno Tipo II , Proteínas Matrilinas , Inflamação/metabolismo , Citocinas/metabolismo
12.
Soft Matter ; 19(7): 1407-1417, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36723259

RESUMO

In this study, a facile one-pot strategy was developed to prepare porous polymeric microspheres via photopolymerization, where organic solvents functioned as porogens. In this strategy, an oil phase containing organic solvents and photopolymerizable materials was stabilized in water to form a stable oil-in-water emulsion. Upon UV irradiation, the photopolymerizable materials (photosensitive monomers/photosensitive prepolymers) underwent polymerization to form microspheres and the subsequent removal of organic solvents left pores in microspheres, leading to the generation of porous polymeric microspheres with high yielding. The effects of organic solvents and the chemical structure and concentration of photopolymerizable materials on the microsphere structure were systematically explored. It was found that the polarity of the organic solvents played a decisive role in the preparation of porous microspheres. In addition, the increases in the solvent content and functionalities of photopolymerizable materials were more favorable for the generation of porous microspheres. This strategy could be applicable for a wide selection of photopolymerizable materials, which endowed this strategy with good applicability. The preparation of porous microspheres by this method was facile and easy to handle, enabling the scalable preparation of porous microspheres. In addition, the whole process can be completed within a few minutes at ambient temperature, which was time-saving and energy-saving.

13.
Acta Anaesthesiol Scand ; 67(4): 382-411, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702780

RESUMO

OBJECTIVES: To assess any benefit or harm, we conducted a systematic review of randomised clinical trials (RCTs) allocating adults to dexmedetomidine versus placebo/no intervention for the prevention of delirium in intensive care or post-operative care units. DATA SOURCES: We searched Medline, Embase, CENTRAL and other databases. The last search was 9 April 2022. DATA EXTRACTION: Literature screening, data extraction and risk of bias volume 2 assessments were performed independently and in duplicate. Primary outcomes were occurrences of serious adverse events (SAEs), delirium and all-cause mortality. We used meta-analysis, Trial Sequential Analysis, and GRADE (Grading Recommendations Assessment, Development and Evaluation). DATA SYNTHESIS: Eighty-one RCTs (15,745 patients) provided data for our primary outcomes. Results from trials at low risk of bias showed that dexmedetomidine may reduce the occurrence of the most frequently reported SAEs (relative risk [RR] 0.69; 95% CI 0.43-1.09), cumulated SAEs (RR 0.70; 95% CI 0.52-0.95) and the occurrence of delirium (RR 0.62; 95% CI 0.43-0.89). The certainty of evidence was very low for delirium. Mortality was very low in trials at low risk of bias (0.4% in the dexmedetomidine groups and 1.0% in the control groups) and meta-analysis did not provide conclusive evidence that dexmedetomidine may result in lower or higher all-cause mortality (RR 0.47; 95% CI 0.18-1.21). There was a lack of information from trial results at low risk of bias for all primary outcomes. CONCLUSIONS: Trial results at low risk of bias showed that dexmedetomidine might reduce occurrences of SAEs and delirium, while no conclusive evidence was found for effects on all-cause mortality. The certainty of evidence ranged from very low for occurrence of delirium to low for the remaining outcomes.


Assuntos
Delírio , Dexmedetomidina , Adulto , Humanos , Cuidados Críticos , Delírio/prevenção & controle , Dexmedetomidina/uso terapêutico , Hospitalização , Unidades de Terapia Intensiva
14.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768724

RESUMO

Drought stress severely threatens the yield of cereal crops. Therefore, understanding the molecular mechanism of drought stress response of plants is crucial for developing drought-tolerant cultivars. NAC transcription factors (TFs) play important roles in abiotic stress of plants, but the functions of NAC TFs in sorghum are largely unknown. Here, we characterized a sorghum NAC gene, SbNAC9, and found that SbNAC9 can be highly induced by polyethylene glycol (PEG)-simulated dehydration treatments. We therefore investigated the function of SbNAC9 in drought stress response. Sorghum seedlings overexpressing SbNAC9 showed enhanced drought-stress tolerance with higher chlorophyll content and photochemical efficiency of PSII, stronger root systems, and higher reactive oxygen species (ROS) scavenging capability than wild-type. In contrast, sorghum seedlings with silenced SbNAC9 by virus-induced gene silencing (VIGS) showed weakened drought stress tolerance. Furthermore, SbNAC9 can directly activate a putative peroxidase gene SbC5YQ75 and a putative ABA biosynthesis gene SbNCED3. Silencing SbC5YQ75 and SbNCED3 led to compromised drought tolerance and reduced ABA content of sorghum seedlings, respectively. Therefore, our findings revealed the important role of SbNAC9 in response to drought stress in sorghum and may shed light on genetic improvement of other crop species under drought-stress conditions.


Assuntos
Sorghum , Espécies Reativas de Oxigênio/metabolismo , Sorghum/genética , Sorghum/metabolismo , Resistência à Seca , Grão Comestível/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética
15.
Biochem Biophys Res Commun ; 604: 43-50, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-35286869

RESUMO

Preeclampsia (PE) is a common obstetric disease caused by placenta development abnormality, typically characterized as inadequate trophoblast invasion and spiral artery remodeling. In this study, we found that LMO2 level was decreased in both cytotrophoblast (CTB) and interstitial extravillous trophoblast (iEVT) in human PE placentas, and LMO2 selectively promoted cell migration in iEVT derived HTR-8/SVneo cells whereas increased proliferation in CTB derived JEG-3 cells. In mechanism, LMO2 interacted with NCKAP1, leading to destruction of WAVE regulatory complex and increased lamellipodia formation in HTR-8/SVneo cells, whereas interacted with ß-catenin and up-regulated a number of core Wnt/Hippo pathway target genes in JEG-3 cells. This study revealed the differentially functional patterns of LMO2 in different trophoblast subtypes, and suggested LMO2 as a novel target for PE prediction, prevention and treatment in clinical.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Placenta/metabolismo , Placentação , Pré-Eclâmpsia/metabolismo , Gravidez , Proteínas Proto-Oncogênicas/metabolismo , Trofoblastos/metabolismo
16.
J Transl Med ; 20(1): 473, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266726

RESUMO

BACKGROUND: As a key process in transcriptional regulatory mechanisms, alternative splicing (AS) plays a crucial role in maintaining the diversity of RNA and protein expression, and mediates the immune response in infectious diseases, especially for the COVID-19. Therefore, urgent data gathering and more research of AS profiles in microbe-infected human cells are needed to improve understanding of COVID-19 and related infectious diseases. Herein, we have created CASA, the COVID-19 Alternative Splicing Atlas to provide a convenient computing platform for studies of AS in COVID-19 and COVID-19-related infectious diseases. METHODS: In CASA, we reanalyzed thousands of RNA-seq datasets generated from 65 different tissues, organoids and cell lines to systematically obtain quantitative data on AS events under different conditions. A total of 262,994 AS events from various infectious diseases with differing severity were detected and visualized in this database. In order to explore the potential function of dynamics AS events, we performed analysis of functional annotations and drug-target interactions affected by AS in each dataset. RNA-binding proteins (RBPs), which may regulate these dynamic AS events are also provided for users in this database. RESULTS: CASA displays microbe-induced alterations of the host cell splicing landscape across different virus families and helps users identify condition-specific splicing patterns, as well as their potential regulators. CASA may greatly facilitate the exploration of AS profiles and novel mechanisms of host cell splicing by viral manipulation. CASA is freely available at http://www.splicedb.net/casa/ .


Assuntos
Processamento Alternativo , COVID-19 , Humanos , Processamento Alternativo/genética , COVID-19/genética , Splicing de RNA , Proteínas de Ligação a RNA/genética , RNA/metabolismo
17.
Nucleic Acids Res ; 48(4): 1715-1729, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31912146

RESUMO

N6-methyladenosine (m6A) is a reversible and dynamic RNA modification in eukaryotes. However, how cells establish cell-specific m6A methylomes is still poorly understood. Here, we developed a computational framework to systematically identify cell-specific trans regulators of m6A through integrating gene expressions, binding targets and binding motifs of large number of RNA binding proteins (RBPs) with a co-methylation network constructed using large-scale m6A methylomes across diverse cell states. We applied the framework and successfully identified 32 high-confidence m6A regulators that modulated the variable m6A sites away from stop codons in a cell-specific manner. To validate them, we knocked down three regulators respectively and found two of them (TRA2A and CAPRIN1) selectively promoted the methylations of the m6A sites co-localized with their binding targets on RNAs through physical interactions with the m6A writers. Knockdown of TRA2A increased the stabilities of the RNAs with TRA2A bound near the m6A sites and decreased the viability of cells. The successful identification of m6A regulators demonstrates a powerful and widely applicable strategy to elucidate the cell-specific m6A regulators. Additionally, our discovery of pervasive trans-acting regulating of m6A provides novel insights into the mechanisms by which spatial and temporal dynamics of m6A methylomes are established.


Assuntos
Adenosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Adenosina/química , Adenosina/genética , Linhagem da Célula/genética , Sobrevivência Celular/genética , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes/métodos , Células Hep G2 , Humanos , Metilação , Processamento Pós-Transcricional do RNA/genética
18.
Mar Drugs ; 20(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35447909

RESUMO

Fucoxanthin (FX) is a marine carotenoid that has proven to be a promising marine drug due to the multiple bioactivities it possesses. However, the instability and poor bioavailability of FX greatly limit its application in pharmaceuticals or functional foods. In this study, the creative construction of a solid lipid nanoparticle-microcapsule delivery system using mixed lipids of palm stearin and cholesterol wrapped with gelatin/Arabic gum to load lipophilic FX was fabricated, aiming to improve the stability and bioavailability of FX. The results showed that the encapsulated efficiency (EE) and drug loading capacity (LC) of optimized FX microcapsules (FX-MCs) obtained were as high as 96.24 ± 4.60% and 0.85 ± 0.04%, respectively, after single-factor experiments. The average particle size was 1154 ± 54 nm with negative Zeta potential (-20.71 ± 0.93 mV) as depicted with size-zeta potential spectrometer. The differential scanning calorimeter (DSC) and thermogravimetric analyzer (TG) results indicated that FX-MC has a higher Tg and slower weight loss than FX monomers (FX crystal) and blank MCs. Besides, The Fourier transform infrared spectrometer (FTIR) confirmed the good double encapsulation of FX into the solid lipid and composite coacervate. Moreover, the encapsulated FX showed higher storage stability, sustained release (55.02 ± 2.80% release in 8 h), and significantly improved bioavailability (712.33%) when compared to free FX. The research results can provide a principle theoretical basis for the development and application of FX in pharmaceuticals or functional foods.


Assuntos
Nanopartículas , Disponibilidade Biológica , Cápsulas , Colesterol , Portadores de Fármacos/química , Lipossomos , Nanopartículas/química , Tamanho da Partícula , Xantofilas
19.
J Am Chem Soc ; 143(27): 10203-10213, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34210123

RESUMO

A molecular description of the structure and behavior of water confined in aluminosilicate zeolite pores is a crucial component for understanding zeolite acid chemistry under hydrous conditions. In this study, we use a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and ab initio molecular dynamics (AIMD) to study H2O confined in the pores of highly hydrated zeolite HZSM-5 (∼13 and ∼6 equivalents of H2O per Al atom). The 2D IR spectrum reveals correlations between the vibrations of both terminal and H-bonded O-H groups and the continuum absorption of the excess proton. These data are used to characterize the hydrogen-bonding network within the cluster by quantifying single-, double-, and non-hydrogen-bond donor water molecules. These results are found to be in good agreement with the statistics calculated from an AIMD simulation of an H+(H2O)8 cluster in HZSM-5. Furthermore, IR spectral assignments to local O-H environments are validated with DFT calculations on clusters drawn from AIMD simulations. The simulations reveal that the excess charge is detached from the zeolite and resides near the more highly coordinated water molecules in the cluster. When they are taken together, these results unambiguously assign the complex IR spectrum of highly hydrated HZSM-5, providing quantitative information on the molecular environments and hydrogen-bonding topology of protonated water clusters under extreme confinement.

20.
BMC Genomics ; 21(1): 313, 2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306899

RESUMO

BACKGROUND: Grass carp (Ctenopharyngodon idellus) are important species in Asian aquaculture. A draft genome for grass carp has already been published in 2015. However, there is still a requirement for a suitable genetic linkage map to arrange scaffolds on chromosomal frameworks. QTL analysis is a powerful tool to detect key locations for quantitative traits, especially in aquaculture. There no growth related QTLs of grass carp have been published yet. Even the growth trait is one of the focuses in grass carp culture. RESULTS: In this study, a pair of distantly related parent grass carps and their 100 six-month-old full-sib offspring were used to construct a high-density genetic map with 6429 single nucleotide polymorphisms (SNPs) by 2b-RAD technology. The total length of the consensus map is 5553.43 cM with the average marker interval of 1.92 cM. The map has a good collinearity with both the grass carp draft genome and the zebrafish genome, and it assembled 89.91% of the draft genome to a chromosomal level. Additionally, according to the growth-related traits of progenies, 30 quantitative trait loci (QTLs), including 7 for body weight, 9 for body length, 5 for body height and 9 for total length, were identified in 16 locations on 5 linkage groups. The phenotypic variance explained for these QTLs varies from 13.4 to 21.6%. Finally, 17 genes located in these regions were considered to be growth-related because they either had functional mutations predicted from the resequencing data of the parents. CONCLUSION: A high density genetic linkage map of grass carp was built and it assembled the draft genome to a chromosomal level. Thirty growth related QTLs were detected. After the cross analysis of Parents resequencing data, 17 candidate genes were obtained for further researches.


Assuntos
Carpas/crescimento & desenvolvimento , Carpas/genética , Mapeamento Cromossômico , Locos de Características Quantitativas , Animais , Peso Corporal/genética , Ligação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Sintenia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA