Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 148: 109475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447781

RESUMO

The T-cell receptor (TCR) is a specific molecule on the surface of all T cells that mediates cellular adaptive immune responses to antigens. Hucho bleekeri is a critically endangered species and is regarded as a glacial relict that has the lowest-latitude distribution compared with any Eurasian salmonid. In the present study, two TCR genes, namely, TCR α and ß, were identified and characterized in H. bleekeri. Both TCR α and TCR ß have typical TCR structures, including the IgV domain, IgC domain, connecting peptide, transmembrane and cytoplasmic domains. The two TCR genes were constitutionally expressed in various tissues, with the highest expression found in the spleen for TCR α and in the trunk kidney for TCR ß. Challenge of H. bleekeri with LPS or poly(I:C) resulted in significant upregulation of both TCR α and ß expression in headkidney and spleen primary cells, indicating their potential roles in the immune response. Molecular polymorphism analysis of the whole ORF regions of TCR α and ß in different individuals revealed high diversity of IgV domains of these two genes, especially in complementarity-determining region (CDR) 3. The ratio of nonsynonymous substitution occurred at a significantly higher frequency than synonymous substitution in the CDR of TCR α and ß, demonstrating the existence of positive selection. The results obtained in the present study enhance our understanding of TCR roles in regulating immune mechanisms and provide new information for the study of TCR lineage diversity in fish.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta , Salmonidae , Animais , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Polimorfismo Genético , Linfócitos T , Receptores de Antígenos de Linfócitos T/genética , Salmonidae/genética
2.
Ecotoxicol Environ Saf ; 280: 116546, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843747

RESUMO

In China, fence net aquaculture practices have been established in some subsidence waters that have been formed in coal mining subsidence areas. Within this dynamic ecological context, diverse fish species grow continuously until being harvested at the culmination of their production cycle. The purpose of this study was to investigate diverse factors influencing the bioavailability and distribution of mercury (Hg) and methylmercury (MeHg), which have high physiological toxicity in fish, in the Guqiao coal mining subsidence area in Huainan, China. Mercury and MeHg were analyzed in 38 fish samples of eight species using direct mercury analysis (DMA-80) and gas chromatography-cold vapor atomic fluorescence spectrometry (GC-CVAFAS). The analysis results show that the ranges of Hg and MeHg content and methylation rate in the fish were 7.84-85.18 ng/g, 0.52-3.52 ng/g, and 0.81-42.68 %, respectively. Meanwhile, conclusions are also summarized as following: (1) Monophagous herbivorous fish that were fed continuously in fence net aquaculture areas had higher MeHg levels and mercury methylation rates than carnivorous fish. Hg and MeHg contents were affected by different feeding habits of fish. (2) Bottom-dwelling fish show higher MeHg levels, and habitat selection in terms of water depth also partially affected the MeHg content of fish. (3) The effect of fence net aquaculture on methylation of fish in subsidence water is mainly from feed and mercury-containing bottom sediments. However, a time-lag is observed in the physiological response of benthic fishes to the release of Hg from sediments. Our findings provides baseline reference data for the ecological impact of fence net aquaculture in waters affected by soil subsidence induced by coal mining in China. Prevalent environmental contaminants within coal mining locales, notably Hg, may infiltrate rain-induced subsidence waters through various pathways.


Assuntos
Aquicultura , Minas de Carvão , Monitoramento Ambiental , Peixes , Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/análise , Animais , Mercúrio/análise , Poluentes Químicos da Água/análise , Peixes/metabolismo , China , Monitoramento Ambiental/métodos
3.
Fish Shellfish Immunol ; 142: 109118, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774901

RESUMO

Species in Triplophysa display strong adaptability to the extreme environment of the plateau, thus offering an ideal model to study the molecular mechanism of fish adaptation to environmental stress. In the present study, we conducted integrated analysis of the transcriptome and metabolism of liver tissue in Triplophysa siluroides under heat stress (28 °C) and control (10 °C) conditions to identify heat stress-induced genes, metabolites and pathways. RNA-Seq identified 2373 differentially expressed genes, which consisted of 1360 upregulated genes and 1013 downregulated genes, in the heat stress group vs. the control group. Genes in the heat shock protein (Hsp) family, including Hsp40, Hsp70, Hsp90 and other Hsps, were strongly upregulated by heat stress. Pathway enrichment analysis revealed that the PI3K/AKT/mTOR and protein processing in the endoplasmic reticulum (ER) pathways were significantly affected by heat stress. Metabolism sequencing identified a total of 155 differentially abundant metabolites, including 118 significantly upregulated metabolites and 37 downregulated metabolites. Combined analysis of the transcriptome and metabolism results showed that ubiquitin-dependent proteolysis and purine metabolism pathways were enhanced in response to acute heat stress to protect cells from damage under stress conditions. The results of this study may contribute to our understanding of the underlying molecular mechanism of the heat stress response in cold-water fish.


Assuntos
Cipriniformes , Transcriptoma , Animais , Altitude , Fosfatidilinositol 3-Quinases/genética , Perfilação da Expressão Gênica/veterinária , Resposta ao Choque Térmico/genética , Cipriniformes/genética
4.
Environ Res ; 216(Pt 1): 114457, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183788

RESUMO

With the rapid development of hydropower facility construction, the total dissolved gas (TDG) generated by dam discharge is seriously threatening the survival of fish and has become an ecological environmental issue of global concern. However, how TDG affects fish physiology and the underlying molecular mechanism remain poorly known. In this study, Acipenser dabryanus, an ancient living fossil that is a flagship species of the Yangtze River, was exposed to water supersaturated with TDG at a level of 116% for 48 h. A comprehensive analysis was performed to study the effect of TDG supersaturation stress on A. dabryanus, including histopathological, biochemical, transcriptomic and metabolomic analyses. The histopathological results showed that mucosal-associated lymphoid tissues were seriously damaged after TDG supersaturation stress. Plasma catalase levels increased significantly under TDG supersaturation stress, while superoxide dismutase levels decreased significantly. Transcriptomic analysis revealed 289 upregulated genes and 162 downregulated genes in gill tissue and 535 upregulated and 104 downregulated genes in liver tissue. Metabolomic analysis revealed 63 and 164 differentially abundant metabolites between the control group and TDG group in gill and liver, respectively. The majority of heat shock proteins and genes related to ubiquitin and various immune-related pathways were significantly upregulated by TDG supersaturation stress. Integrated transcriptomic and metabolomic analyses revealed the upregulation of amino acid metabolism and glycometabolism pathways under TDG supersaturation stress. Glycerophospholipid metabolism was increased which might be associated with maintaining cell membrane integrity. This is the first study revealing the underlying molecular mechanisms of effects of TDG supersaturation on fish. Our results suggested that acute TDG supersaturation stress could enhance immune and antioxidative functions and activate energy metabolic pathways as an adaptive mechanism in A. dabryanus.


Assuntos
Gases , Transcriptoma , Animais , Gases/análise , Peixes/fisiologia , Rios/química , Movimentos da Água
5.
Ecotoxicol Environ Saf ; 249: 114366, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508793

RESUMO

Temperature fluctuations caused by climate change and global warming pose a great threat to various species. Most fish are particularly vulnerable to elevated temperatures. Understanding the mechanism of high-temperature tolerance in fish can be beneficial for proposing effective strategies to help fish cope with global warming. In this study, we systematically studied the effects of high temperature on Acipenser dabryanus, an ancient living fossil and flagship species of the Yangtze River, at the histological, biochemical, transcriptomic and metabolomic levels. Intestinal and liver tissues from the control groups (18 °C) and acute heat stress groups (30 °C) of A. dabryanus were sampled for histological observation and liver tissues were assessed for transcriptomic and metabolomic profiling. Histopathological analysis showed that the intestine and liver tissues were damaged after heat stress. The plasma cortisol content and the levels of oxidative stress markers (catalase/glutathione reductase) and two aminotransferases (aspartate aminotransferase/alanine aminotransferase) increased significantly in response to acute heat stress. Transcriptomic and metabolomic methods showed 6707 upregulated and 4189 downregulated genes and 64 upregulated and 78 downregulated metabolites in the heat stress group. Heat shock protein (HSP) genes showed striking changes in expression under heat stress, with 21 genes belonging to the HSP30, HSP40, HSP60, HSP70 and HSP90 families significantly upregulated by short-term heat stress. The majority of genes associated with ubiquitin and various immune-related pathways were also markedly upregulated in the heat stress group. In addition, the combined analysis of metabolites and gene profiles suggested an enhancement of amino acid metabolism and glycometabolism and the suppression of fatty acid metabolism during heat stress, which could be a potential energy conservation strategy for A. dabryanus. To the best of our knowledge, the present study represents the first attempt to reveal the mechanisms of heat stress responses in A. dabryanus, which can provide insights into improved cultivation of fish in response to global warming.


Assuntos
Peixes , Transcriptoma , Animais , Peixes/genética , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Proteínas de Choque Térmico/genética
6.
J Environ Manage ; 347: 119127, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797510

RESUMO

This study prepared and characterized bamboo-derived biochar loaded with different ratios of iron and manganese; evaluated its remediation performance in arsenic-contaminated soil by studying the changes in various environmental factors, arsenic speciation, and arsenic leaching amount in the soil after adding different materials; proposed the optimal ratio and mechanism of iron-manganese removal of arsenic; and explained the multivariate relationship between enzyme activity and soil environmental factors based on biological information. Treatment with Fe-Mn-modified biochar increased the organic matter, cation exchange capacity, and N, P, K, and other nutrient contents. During the remediation process, O-containing functional groups such as Mn-O/As and Fe-O/As were formed on the surface of the biochar, promoting the transformation of As from the mobile fraction to the residual fraction and reducing the phytotoxicity of As, and the remediation ability for As was superior to that of Fe-modified biochar. Mn is indispensable in the FeMn-BC synergistic remediation of As, as it can increase the adsorption sites and the number of functional groups for trace metals on the surface of biochar. In addition to electrostatic attraction, the synergistic mechanism of ferromanganese-modified biochar for arsenic mainly involves redox and complexation. Mn oxidizes As(Ⅲ) to more inert As(V). In this reaction process, Mn(Ⅳ) is reduced to Mn(Ⅲ) and Mn(II), promoting the formation of Fe(Ⅲ) and the conversion of As into Fe-As complexes, while As is fixed due to the formation of ternary surface complexes. Moreover, the effect of adding Fe-Mn-modified biochar on soil enzyme activity was correlated with changes in soil environmental factors; catalase was correlated with soil pH; neutral phosphatase was correlated with soil organic matter; urease was correlated with ammonia nitrogen, and sucrase activity was not significant. This study highlights the potential value of FM1:3-BC as a remediation agent in arsenic-contaminated neutral soils.


Assuntos
Arsênio , Poluentes do Solo , Manganês/química , Arsênio/química , Compostos Férricos , Poluentes do Solo/química , Carvão Vegetal/química , Ferro/química , Solo/química
7.
Fish Shellfish Immunol ; 122: 276-287, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35181444

RESUMO

Acipenser dabryanus is a species endemic to Yangtze River drainage in China and is listed as a critical endangered species on the IUCN Red List. In the present study, the liver and spleen transcriptomes were analyzed by comparing the data of A. dabryanus that experienced nine different feeding rhythms (once a day diurnal, T1; two times a day diurnal, T2; three times a day diurnal, T3; four times a day, T4; five times a day, T5; six times a day, T6; once a day nocturnal, Tn1; two times a day nocturnal, Tn2; and three times a day nocturnal, Tn3). Transcriptome sequencing generated 1,901,236,482 clean reads, encompassing 570.4 Gb of sequence data. The reads were assembled into 287,372 unigenes with an average length of 803 bp and an N50 of 1004 bp. KEGG analysis showed that 1,080, 1,030, and 1216 unigenes were annotated to lipid metabolism, amino acid metabolism and carbohydrate metabolism, respectively, and 2549 unigenes were annotated to the immune system category. Differentially expressed genes (DEGs) between different feeding frequency groups or between nighttime and daytime feeding were obtained and functionally enriched. Importantly, DEGs participating in nutrition metabolism and various immunoregulation pathways and their expression profiles in A. dabryanus were discussed. Interestingly, the majority of key genes related to lipid metabolism or in immunodependent gene families, such as antimicrobial peptides, Toll-like receptors, chemokines, NOD-like receptors, B cell receptors and the major histocompatibility complex, were all significantly upregulated in animals in the T6 group compared to the characteristics of animals in the T2 group that had a normal feeding frequency. In addition, light/dark rhythm also affected the immunity of A. dabryanus, and fish fed at night possessed an improved immune response than fish fed at daytime. Our study suggested that feeding six times a day is optimal for A. dabryanus juvenile growth as it enhances the organism's nutrition metabolism and immune function.


Assuntos
Peixes , Perfilação da Expressão Gênica , Animais , Espécies em Perigo de Extinção , Peixes/genética , Perfilação da Expressão Gênica/veterinária , Receptores Toll-Like/genética , Transcriptoma
8.
Artigo em Inglês | MEDLINE | ID: mdl-34942371

RESUMO

Yangtze sturgeon (Acipenser dabryanus) is a species endemic to Yangtze River drainage in China and is listed as a critically endangered species on the IUCN Red List. In the present study, cholecystokinin (CCK), one of the most important neuroregulatory digestive genes, and its receptor (CCKr) were identified from the full-length transcriptome analysis of A. dabryanus. The deduced amino acid sequences of CCK and CCKr from A. dabryanus showed structural features common to those in other vertebrates. Gene expression profile analysis showed that CCK and CCKr were universally expressed in different tissues, and both had the highest expression in the brain. Starvation and refeeding significantly regulated the expression levels of CCK and CCKr in the brain, suggesting that CCK and CCKr were involved in feed intake regulation in A. dabryanus as in mammals. In addition, the expression levels of CCK and CCKr under different feeding frequencies were studied. Compared with the control group (fed two times a day), the expression levels of CCK and CCKr in the intestine and brain did not change significantly in the other groups after 8 weeks of rearing, indicating that the feeding frequency might not influence the appetite of A. dabryanus. The present work provides a basis for further investigation into the regulation of feeding in A. dabryanus.


Assuntos
Colecistocinina , Inanição , Animais , Colecistocinina/genética , Colecistocinina/metabolismo , Espécies em Perigo de Extinção , Peixes/fisiologia , Mamíferos/metabolismo , Distribuição Tecidual
9.
Br J Nutr ; 126(5): 695-707, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33143764

RESUMO

The aim of this study was to explore the effects and mechanisms of different starvation treatments on the compensatory growth of Acipenser dabryanus. A total of 120 fish (60·532 (sem 0·284) g) were randomly assigned to four groups (fasting 0, 3, 7 or 14 d and then refed for 14 d). During fasting, middle body weight decreased significantly with prolonged starvation. The whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had been effected with varying degrees of changes. The growth hormone (GH) level in serum was significantly increased in 14D; however, insulin-like growth factor-1 (IGF-1) showed the opposite trend. The neuropeptide Y (npy) mRNA level in brain was significantly improved in 7D; peptide YY (pyy) mRNA level in intestine was significantly decreased during fasting. After refeeding, the final body weight, percentage weight gain, specific growth rate, feed intake, feed efficiency and protein efficiency ratio showed no difference between 0D and 3D. The changes of whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had taken place in varying degrees. GH levels in 3D and 7D were significantly higher than those in the 0D; the IGF-1 content decreased significantly during refeeding. There was no significant difference in npy and pyy mRNA levels. These results indicated that short-term fasting followed by refeeding resulted in full compensation and the physiological and biochemical effects on A. dabryanus were the lowest after 3 d of starvation and 14 d of refeeding. Additionally, compensation in A. dabryanus may be mediated by appetite genes and GH, and the degree of compensation is also affected by the duration of starvation.


Assuntos
Apetite , Peixes , Hormônio do Crescimento , Fator de Crescimento Insulin-Like I , Inanição , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Digestão , Peixes/crescimento & desenvolvimento , Peixes/fisiologia , Fator de Crescimento Insulin-Like I/genética , RNA Mensageiro
10.
J Environ Manage ; 298: 113451, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34352479

RESUMO

The increase in NO3- content in surface water caused by intensive mining activities in Huainan City, China, has attracted considerable attention owing to the deterioration of water quality and the degradation of ecosystems in recent years. The Huainan mining area, which is highly disturbed by anthropogenic activities, was selected as a typical observation area, and the surface water was classified as open subsidence water (OSW), closed subsidence water (CSW), and river water (RW). Moreover, the hydrochemical parameters and the δ15N and δ18O values of nitrate were employed to quantitatively trace the sources and biochemical transformation of NO3-, and the contribution ratios of different NO3- sources were estimated using the stable isotope analysis in R based on the Bayesian model. There was evident nitrification in the study area, but no significant denitrification has occurred. A substantial portion of δ15N-NO3- demonstrated complex sources of NO3-. Compared with those of CSW, the NO3- compositions of the OSW approached to those of the RW due to river recharge and discharge, and were greatly affected by anthropogenic activities. The proportional contribution of manure and sewage in the OSW was found to be the highest with a mean value of 39.5 % ± 12.3 %, which was followed by that of mine drainage (mean: 22.1 % ± 13.1 %), chemical fertilizer (mean: 17.5 % ± 10.6 %), and soil organic nitrogen (mean: 17.5 % ± 11.6 %). In the RW, the highest mean contribution of manure sewage was 35.2 % ± 9.7 %, which was followed by that of chemical fertilizer (mean: 29.3 % ± 7.2 %), mine drainage (mean: 23.4 % ± 13.0 %), and soil organic nitrogen (mean: 10.9 % ± 8.3 %). In contrast, the contribution of chemical fertilizer to the CSW was the highest with a mean value of 33.9 % ± 13.6 %, which was followed by that of soil organic nitrogen (mean: 26.5 % ± 13.8 %), mine drainage (mean: 18.1 % ± 11.6 %). Therefore, NO3- in the surface water of the mining area primarily originates from chemical fertilizers and manure sewage. In addition, the contribution of mine drainage to nitrate in the study area indicates the potential impact of mining activities on surface water. These findings highlight the value of classifying different types of surface water in tracing NO3- contamination sources, and provide relevant theoretical basis for tracing nitrate sources in other areas.


Assuntos
Nitratos , Poluentes Químicos da Água , Teorema de Bayes , China , Ecossistema , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Poluentes Químicos da Água/análise
11.
Fish Shellfish Immunol ; 88: 207-216, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30807859

RESUMO

Antimicrobial peptides (AMPs) play essential roles in the innate immune system to protect against a wide variety of pathogens in aquatic environments. In this study, three very important AMPs, cathelicidin, hepcidin and defensin, were identified in the critically endangered Acipenser dabryanus. The full-length cDNA sequences of these three AMPs were identified from transcriptome sequencing and the rapid amplification of cDNA ends (RACE) technique. Phylogenetic analysis showed that cathelicidin formed a clade with the other members of the cathelicidin family, and similar results were obtained for hepcidin. The A. dabryanus ß-defensin belonged to the fish class 2 ß-defensins. A tissue distribution study showed that the three AMP transcripts could be detected constitutively in various tissues. The highest expression levels of cathelicidin and hepcidin were found in the liver, while defensin was primarily expressed in the skin. Bacterial challenge in vivo revealed significant changes in the gene expression of the three AMPs at both mucosal sites and systemic sites. Striking upregulation of cathelicidin and hepcidin was observed in the skin at 12 h post-challenge, with increases of more than 7000-fold and 1000-fold, respectively, compared to the control, and the expression of defensin mRNA was remarkably elevated in the hindgut (by 230-fold at 6 h post-challenge). Moreover, according to the expression profiles of the AMPs post-challenge, we found that the mucosal immune response occurred earlier than the systemic immune response following bacterial infection. Our results suggest that these three novel AMPs may play important roles in the innate immune system of A. dabryanus to protect against invading pathogens, especially during the mucosal immune response.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peixes/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , DNA Complementar , Edwardsiella tarda , Espécies em Perigo de Extinção , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/isolamento & purificação , Peixes/genética , Peixes/microbiologia , Hepcidinas/genética , Hepcidinas/isolamento & purificação , Imunidade Inata , Filogenia , Análise de Sequência de DNA , beta-Defensinas/genética , beta-Defensinas/isolamento & purificação , Catelicidinas
12.
Biochem Biophys Res Commun ; 457(1): 83-9, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25542153

RESUMO

The tripartite motif (TRIM)-containing proteins exhibit various activities and play important roles in the immune system through regulating signaling pathways. Bloodthirsty gene is a multigene subset of TRIM genes. In this study we identified and characterized a new member of the bloodthirsty subset of TRIM genes, btr20, in zebrafish (Danio rerio). The gene is located on chromosome 19 and forms a cluster with btr18, btr21, btr22 and an E3 ubiquitin ligase TRIM39-like gene. Deduced btr20 represents a RBCC-B30.2 TRIM protein containing 544 amino acids. The mRNA expression level of btr20 was highest in intestine and gill, followed by in spleen and kidney. Challenge experiment with Aeromonas hydrophila strain NJ-1 showed that the levels of btr20 and NF-κB mRNA were remarkably upregulated in the four tissues mentioned above. btr20 was localized in the cytoplasm and formed aggregate in human embryonic kidney cell line 293T. In vitro self-ubiquitylation experiment demonstrated that btr20 has E3 ubiquitin ligase activity that can be self-ubiquitylated with most E2 enzymes, especially UbcH6. The results suggested that btr20 may involve in the anti-microbial activity in the immune system as an E3 ubiquitin ligase.


Assuntos
Aeromonas/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/imunologia , Peixe-Zebra/microbiologia , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Análise de Sequência de Proteína , Frações Subcelulares/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
13.
Biochem Biophys Res Commun ; 453(3): 425-31, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25301557

RESUMO

The tripartite motif (TRIM) proteins play important roles in a broad range of biological processes, including apoptosis, cell proliferation and innate immunity response. In this study, a TRIM gene and its three splice variants were cloned from an elasmobranch fish-whitespotted bamboo shark (Chiloscyllium plagiosum Bennett). Phylogenetic analysis indicated that the gene was closely related to TRIM35 homologs, thus termed CpTRIM35-like. Deduced CpTRIM35 has a RBCC-PRY/SPRY structure typical of TRIM proteins, and its splice variants (CpTRIM35-1-3) have different truncations at the C-terminus. The gene products were constitutively expressed in adult sharks with the highest levels in spleen and kidney. The different subcellular locations, upregulation upon LPS and poly I:C stimulation, and significant E3 ubiquitin ligase activities suggested their different roles in immune responses as an E3 ubiquitin ligase. This is the first TRIM protein ever characterized in elasmobranch fish.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Splicing de RNA , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Clonagem Molecular , DNA Complementar , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Filogenia , Tubarões , Ubiquitinação
14.
Fish Shellfish Immunol ; 36(2): 435-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24389387

RESUMO

Akirin is a nuclear factor involved in innate immune responses of arthropods and mammals. In this study we have cloned an Akirin2 gene, pdakirin2, from freshwater Chinese loach (Paramisgurnus dabryanus) and characterized its biological functions. Phylogenetic analysis revealed deduced PdAkirin2 had high sequence identities to Akirin2 homologs from fish and mammals (70-91%), it contained two conserved nuclear localization signals (NLSs) with verified sub-cellular localization. Quantitative real-time (qRT)-PCR analysis indicated that PdAkirin2 was present in a wide range of loach tissues and showed up-regulation with challenges of Aeromonas hydrophila NJ-1, LPS and poly I:C. PdAkirin2 as an immune factor had significant effects on the expression of cytokines (TNFα, IFN-α, IFN-γ, IL-4 and IL-1ß) and transcription factor NF-κB. This study provides insights into the potential role of PdAkirin2 in the innate immune system.


Assuntos
Cipriniformes/genética , Cipriniformes/imunologia , Proteínas de Peixes/genética , Regulação da Expressão Gênica , Imunidade Inata , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Cipriniformes/classificação , Citocinas/genética , Citocinas/metabolismo , Doenças dos Peixes/imunologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência/veterinária
15.
Fish Shellfish Immunol ; 35(2): 399-406, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23688963

RESUMO

ß-defensins are a large family of multi-disulfide-bonded peptides with broad-spectrum antimicrobial activities that contribute to innate host defense in many organisms, but little information is available about ß-defensins produced by freshwater fish lacking scales. We therefore cloned and identified a ß-defensin gene from Chinese loach (Paramisgurnus dabryanus) by designing degenerate primers and using thermal asymmetric interlaced PCR. This gene is the first defensin gene ever identified in a non-scaled freshwater fish. Annotation of the protein domain architecture showed that the putative Chinese loach ß-defensin contains the signature motif of six conserved cysteines within the mature peptide, an aspect similar to ß-defensins of other marine fish. We also used quantitative real-time PCR to investigate the expression pattern of the Chinese loach ß-defensin gene, mRNA of which could be observed in various tissues. After challenge with the pathogenic bacterium Aeromonas hydrophila, ß-defensin expression was induced in the eye, gill, skin, and spleen of the adult loach. The bioactivity of the recombinant P. dabryanus ß-defensin was examined against pathogenic bacteria, and the results suggest that this class 2 ß-defensin has potential applications for treatment of bacterial infections.


Assuntos
Cipriniformes/genética , Proteínas de Peixes/genética , Imunidade Inata , beta-Defensinas/genética , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cipriniformes/imunologia , Cipriniformes/microbiologia , DNA Complementar/genética , DNA Complementar/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência/veterinária , beta-Defensinas/química , beta-Defensinas/metabolismo
16.
Environ Sci Pollut Res Int ; 30(43): 97911-97924, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37603244

RESUMO

During the dam discharging period, the strong aeration of high-speed water leads to the supersaturation of total dissolved gas (TDG) in the downstream water, which causes gas bubble disease (GBD) in fish and threatens their survival. TDG supersaturation has now become an ecological and environmental issue of global concern; however, the molecular mechanism underlying the physiological effect of TDG supersaturation on fish is poorly known. Here, we comprehensively investigated the effect of TDG supersaturation on Pelteobagrus fulvidraco at the histopathological, biochemical, transcriptomic, and metabolomic levels. After exposure to 116% TDG, P. fulvidraco exhibited classic GBD symptoms and pathological changes in gills. The level of superoxide dismutase was highly significantly decreased. Transcriptomic results revealed that heat shock proteins (HSPs) and a large number of genes involved in immunity were increased by TDG stress. A key environmental sensor PI3K/Akt/mTOR pathway was significantly stimulated for defence against stress. Integrated transcriptomic and metabolomic analyses revealed that key metabolites and genes were upregulated in the triacylglycerol synthesis pathway and that amino acid levels decreased, which might be associated with TDG supersaturation stress. The present study demonstrated that TDG supersaturation could cause severe physiological damage in fish. HSP genes, immune functions, and energy metabolic pathways were enhanced to counteract the adverse effects.


Assuntos
Peixes-Gato , Animais , Fosfatidilinositol 3-Quinases , Perfilação da Expressão Gênica , Transcriptoma , Aminoácidos
17.
Artigo em Inglês | MEDLINE | ID: mdl-37004899

RESUMO

In the dam discharge season, the supersaturation of total dissolved gas (TDG) in the downstream channel can seriously affect the survival of aquatic organisms. However, few studies have revealed the mechanism by which TDG supersaturation affects the physiology of fish thus far. The present study was conducted to study the mechanism of the effect of TDG supersaturation on Schizothorax davidi, a species that is very sensitive to gas bubble disease. S. davidi was exposed to 116 % TDG supersaturation stress for 24 h. Serum biochemical tests showed that the aspartate aminotransferase and alanine aminotransferase levels after TDG supersaturation exposure were significantly decreased compared to those in the control group, while superoxide dismutase activity was significantly increased. RNA-Seq of gill tissues identified 1890 differentially expressed genes (DEGs), which consisted of 862 upregulated genes and 1028 downregulated genes, in the TDG supersaturation group vs. the control group. Pathway enrichment analysis revealed that the cell cycle, apoptosis and immune signaling pathways were affected by TDG stress. The results of this study may contribute to our understanding of the underlying molecular mechanism of environmental stress in fish.


Assuntos
Cyprinidae , Gases , Animais , Gases/análise , Movimentos da Água , Cyprinidae/genética , Transcriptoma , Perfilação da Expressão Gênica
18.
Environ Pollut ; 335: 122378, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586683

RESUMO

The Hg released from coal mining activities can endanger soil ecosystems and pose a risk to human health. Understanding the accumulation characteristics of mercury (Hg) in coal mining soil is important for effectively controlling Hg emissions and developing measures for the prevention and control of Hg contamination. To identify the potential sources of Hg in soils, the Hg concentration and isotopic composition characteristics of raw coal and different topsoil types from the areas surrounding a coal mine were determined in this study. The results showed that Hg in coal mainly exists mainly in the form of inorganic Hg, and Hg has experienced Hg2+ photoreduction prior to incorporating into coal. In addition, the composition of Hg isotopes differed significantly among different topsoil types, and the δ202Hg value of the farmland soil exhibited large negative excursions compared to the coal mining soil. The ternary mixed model further revealed the presence of substantial differences in potential Hg sources among the two regions, with the coal mining soil being greatly disturbed by anthropogenic activity, and the relative contributions of Hg from raw coal, coal gangue, and background soil to coal mining soil being 33.42%, 34.4%, and 32.19%, respectively. However, Hg from raw coal, coal gangue and background soil contributed 17.04%, 21.46%, and 61.51% of the Hg in the farmland soil, indicating that the accumulation of Hg in farmland soil was derived primarily from the background soil. Our study demonstrated that secondary pollution in soil caused by immense accumulation of solid waste (gangue) by mining activities offers a significant challenge to ecological security. These findings provide new insights into controlling soil Hg in mining areas and further highlight the urgency of strict protective measures for contaminated sites.


Assuntos
Minas de Carvão , Mercúrio , Poluentes do Solo , Humanos , Ecossistema , Monitoramento Ambiental/métodos , Mercúrio/análise , Mineração , Solo , Isótopos , Carvão Mineral/análise , Poluentes do Solo/análise , China
19.
iScience ; 26(8): 107413, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37559901

RESUMO

To analyze the differences between different-sized Acipenser dabryanus, we randomly selected 600 3-month-old A. dabryanus juveniles. Four months later, the blood and white muscle of these fish were analyzed. The results showed no significant difference in the length-weight relationship (LWR) b value between the large and small A. dabryanus. The levels of serum growth hormone (gh) and insulin-like growth factor 1 (igf1) in the large A. dabryanus were significantly lower than those in the small, whereas the activity levels of Total superoxide dismutase (T-sod) and catalase (cat) were opposite to the results of gh and igf1. A total of 212 and 245 metabolites showed significant changes in the positive and negative polarity mode, respectively. Among 3,308 proteins identified, 69 proteins showed upregulated expression, and 185 proteins showed downregulated expression. These results indicated that the growth advantage of A. dabryanus was closely related to glycolysis, protein synthesis, and antioxidant function.

20.
Fish Shellfish Immunol ; 32(5): 621-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22300786

RESUMO

The biological significance of tripartite motif (TRIM) proteins is increasingly being appreciated due to their roles in a broad range of biological processes that associated with innate immunity. In this study, we have described the structural and functional analysis of TRIM3a from zebrafish. Annotation of domain architectures found that the TRIM3a fulfills the TRIM-NHL rule of domain composition with a Filamin/ABP280 domain and NHL repeats at its C-terminal region. In addition, the mRNA expression level of TRIM3a was the highest in brain, and with a relatively higher level in spleen, liver, and gill. A strong expression starting at 36 h post fertilization (hpf) was observed by real-time PCR and could be detected in brain by in situ hybridization, suggesting that TRIM3a protein might play an important role in brain development in zebrafish. Considering that TRIM3a has a RING finger domain, we expressed and purified the TRIM3a protein and performed ubiquitylation assays, our results showed that TRIM3a underwent self-polyubiquitylation in combination with E1, UbcH5c, biotin-ubiquitin in vitro. Meanwhile, TRIM3a-R without the RING domain was expressed and purified as well, in vitro ubiquitylation assays showed that the self-ubiquitylation of TRIM3a was dependent on its RING domain, suggesting that TRIM3a might function as a RING finger E3 ubiquitin ligase.


Assuntos
Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Regulação da Expressão Gênica no Desenvolvimento , Especificidade de Órgãos , Filogenia , Domínios RING Finger , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/análise , Análise de Sequência de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteínas com Motivo Tripartido , Ubiquitina/análise , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA