Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(16): 3913-3919, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37074983

RESUMO

Magnetic topological materials have drawn markedly attention recently due to the strong coupling of their novel topological properties and magnetic configurations. In particular, the MnBi2Te4/(Bi2Te3)n family highlights the researches of multiple magnetic topological materials. Via first-principles calculations, we predict that Mn(Bi, Sb)4Se7, the close relatives of MnBi2Te4/(Bi2Te3)n family, are topological nontrivival in both antiferromagnetic and ferromagnetic configurations. In the antiferromagnetic ground state, Mn(Bi, Sb)4Se7 are simultaneously topological insulators and axion insulators. Massless Dirac surface states emerge on the surfaces parallel to the z axis. In ferromagnetic phases, they are axion insulators. Particularly, when the magnetization direction is along the x axis, they are also topological crystalline insulators. Mirror-symmetry-protected gapless surface states exist on the mirror-invariant surfaces. Hence, the behaviors of surface states are strongly dependent on the magnetization directions and surface orientations. Our work provides more opportunities for the study of magnetic topological physics.

2.
Sci Adv ; 5(7): eaaw0409, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31281884

RESUMO

With no requirements for lattice matching, van der Waals (vdW) ferromagnetic materials are rapidly establishing themselves as effective building blocks for next-generation spintronic devices. We report a hitherto rarely seen antisymmetric magnetoresistance (MR) effect in vdW heterostructured Fe3GeTe2 (FGT)/graphite/FGT devices. Unlike conventional giant MR (GMR), which is characterized by two resistance states, the MR in these vdW heterostructures features distinct high-, intermediate-, and low-resistance states. This unique characteristic is suggestive of underlying physical mechanisms that differ from those observed before. After theoretical calculations, the three-resistance behavior was attributed to a spin momentum locking induced spin-polarized current at the graphite/FGT interface. Our work reveals that ferromagnetic heterostructures assembled from vdW materials can exhibit substantially different properties to those exhibited by similar heterostructures grown in vacuum. Hence, it highlights the potential for new physics and new spintronic applications to be discovered using vdW heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA