Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34695996

RESUMO

A microwave photonics method has been developed for measuring distributed acoustic signals. This method uses microwave-modulated low coherence light as a probe to interrogate distributed in-fiber interferometers, which are used to measure acoustic-induced strain. By sweeping the microwave frequency at a constant rate, the acoustic signals are encoded into the complex microwave spectrum. The microwave spectrum is transformed into the joint time-frequency domain and further processed to obtain the distributed acoustic signals. The method is first evaluated using an intrinsic Fabry Perot interferometer (IFPI). Acoustic signals of frequency up to 15.6 kHz were detected. The method was further demonstrated using an array of in-fiber weak reflectors and an external Michelson interferometer. Two piezoceramic cylinders (PCCs) driven at frequencies of 1700 Hz and 3430 Hz were used as acoustic sources. The experiment results show that the sensing system can locate multiple acoustic sources. The system resolves 20 nε when the spatial resolution is 5 cm. The recovered acoustic signals match the excitation signals in frequency, amplitude, and phase, indicating an excellent potential for distributed acoustic sensing (DAS).

2.
J Lightwave Technol ; 38(19): 5286-5292, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32939105

RESUMO

We proposed and fabricated a microwave-frequency photonic fiber grating (MPFG) by femtosecond laser micromachining on optical fibers. Illuminated by low coherent light source, the MPFG can be interrogated using proposed microwave photonic system to show the resonant peaks in microwave frequency domain. We studied the working principle and characteristics of this device. After that, we discussed the influence of fiber type, apodization and light source coherence lengths on this device. The device can also respond to ambient temperature change like fiber optic sensors.

3.
Opt Laser Technol ; 115: 459-464, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32616966

RESUMO

We propose an in-situ monitoring method of laser assisted ceramic additive manufacturing (AM) fabrication process using photoacoustic (PA) imaging technique. This method is potentially very practical and of low cost, as it can be easily implemented with little modification to the original AM system. A major advantage of this method is that it does not require any complex or expensive component to be installed, just need a microphone to be setup near the work-piece and a data processing program to analyse the acoustic data. By collecting the photoacoustic wave that produced by the laser scanning during the AM process, a spectrogram of the acoustic signal can be generated using short-time Fourier transform (STFT). The PA signal can be extracted by specifying the modulation frequency of the laser in the spectrogram. Combining with the scanning position of the laser beam, the PA image of the layer under processing can be obtained. Detection of two kinds of defects (metal defect and dried paste defect) have been demonstrated. Although there are many other kinds of possible defects in additive manufacturing processes, this method could be a practical and low cost way to monitor most of them with proper choice of parameters of the laser and detection system. The parameters of the system that can influence the PA image quality have also been discussed.

4.
Opt Express ; 25(25): 31362-31376, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245811

RESUMO

This paper presents a new optical fiber distributed sensing concept based on coherent microwave-photonics interferometry (CMPI), which uses a microwave modulated coherent light source to interrogate cascaded interferometers for distributed measurement. By scanning the microwave frequencies, the complex microwave spectrum is obtained and converted to time domain signals at known locations by complex Fourier transform. The amplitudes of these time domain pulses are a function of the optical path differences (OPDs) of the distributed interferometers. Cascaded fiber Fabry-Perot interferometers (FPIs) fabricated by femtosecond laser micromachining were used to demonstrate the concept. The experimental results indicated that the strain measurement resolution can be better than 0.6 µÎµ using a FPI with a cavity length of 1.5 cm. Further improvement of the strain resolution to the nε level is achievable by increasing the cavity length of the FPI to over 1m. The tradeoff between the sensitivity and dynamic range was also analyzed in detail. To minimize the optical power instability (either from the light source or the fiber loss) induced errors, a single reflector was added in front of an individual FPI as an optical power reference for the purpose of compensation.

5.
Opt Lett ; 42(7): 1209-1212, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362731

RESUMO

A new frequency domain measurement method for a fiber-loop ring-down system is proposed in this Letter. Compared to traditional time domain measurement, this method uses a microwave modulated continuous wave (CW) laser as a light source, making full use of the duty cycle to achieve enhanced measurement efficiency. By measuring the amplitude modulation over a frequency span, this technique can be used to determine the ring-down time in the frequency domain, which will then be used to calculate the loss in the ring.

6.
Opt Lett ; 42(13): 2459-2462, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957259

RESUMO

We report an open cavity, cantilever-based fiber optic Fabry-Perot interferometer hydrophone. The hydrophone is made of fused silica material, and its micro-cantilever beam is directly fabricated by femtosecond (fs) laser micromachining. The theoretical analyses and experimental verifications of the frequency response of the sensor are presented.

7.
Opt Express ; 24(2): 1062-71, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832490

RESUMO

Optical birefringence was created in a single-mode fiber by introducing a series of symmetric cuboid stress rods on both sides of the fiber core along the fiber axis using a femtosecond laser. The stress-induced birefringence was estimated to be 2.4 × 10(-4) at the wavelength of 1550 nm. By adding the desired numbers of stressed rods, an in-fiber quarter waveplate was fabricated with a insertion loss of 0.19 dB. The stress-induced birefringence was further explored to fabricate in-fiber polarizers based on the polarization-dependent long-period fiber grating (LPFG) structure. A polarization extinction ratio of more than 20 dB was observed at the resonant wavelength of 1523.9 nm. The in-fiber polarization devices may be useful in optical communications and fiber optic sensing applications.

8.
Sens Actuators B Chem ; 207(Pt A): 571-580, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25530670

RESUMO

pH sensing at the single-cell level without negatively affecting living cells is very important but still a remaining issue in the biomedical studies. A 70 µm reflection-mode fiber-optic micro-pH sensor was designed and fabricated by dip-coating thin layer of organically modified aerogel onto a tapered spherical probe head. A pH sensitive fluorescent dye 2', 7'-Bis (2-carbonylethyl)-5(6)-carboxyfluorescein (BCECF) was employed and covalently bonded within the aerogel networks. By tuning the alkoxide mixing ratio and adjusting hexamethyldisilazane (HMDS) priming procedure, the sensor can be optimized to have high stability and pH sensing ability. The in vitro real-time sensing capability was then demonstrated in a simple spectroscopic way, and showed linear measurement responses with a pH resolution up to an average of 0.049 pH unit within a narrow, but biological meaningful pH range of 6.12-7.81. Its novel characterizations of high spatial resolution, reflection mode operation, fast response and high stability, great linear response within biological meaningful pH range and high pH resolutions, make this novel pH probe a very cost-effective tool for chemical/biological sensing, especially within the single cell level research field.

9.
Sensors (Basel) ; 15(10): 24914-25, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26404280

RESUMO

Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2-8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensor exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200-500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments.

10.
Sens Actuators B Chem ; 193: 95-99, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24574579

RESUMO

Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.

11.
Appl Spectrosc ; 77(8): 860-872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37604114

RESUMO

It is conventionally expected that the performance of existing gas sensors may degrade in the field compared to laboratory conditions because (i) a sensor may lose its accuracy in the presence of chemical interferences and (ii) variations of ambient conditions over time may induce sensor-response fluctuations (i.e., drift). Breaking this status quo in poor sensor performance requires understanding the origins of design principles of existing sensors and bringing new principles to sensor designs. Existing gas sensors are single-output (e.g., resistance, electrical current, light intensity, etc.) sensors, also known as zero-order sensors (Karl Booksh and Bruce R. Kowalski, Analytical Chemistry, DOI: 10.1021/ac00087a718). Any zero-order sensor is undesirably affected by variable chemical background and sensor drift that cannot be distinguished from the response to an analyte. To address these limitations, we are developing multivariable gas sensors with independent responses, which are first-order analytical instruments. Here, we demonstrate self-correction against drift in two types of first-order gas sensors that operate in different portions of the electromagnetic spectrum. Our radiofrequency sensors utilize dielectric excitation of semiconducting metal oxide materials on the shoulder of their dielectric relaxation peak and achieve self-correction of the baseline drift by operation at several frequencies. Our photonic sensors utilize nanostructured sensing materials inspired by Morpho butterflies and achieve self-correction of the baseline drift by operation at several wavelengths. These principles of self-correction for drift effects in first-order sensors open opportunities for diverse emerging monitoring applications that cannot afford frequent periodic maintenance that is typical of traditional analytical instruments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA