Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 22(6): 2270-2276, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35225620

RESUMO

Understanding the Coulomb interactions between two-dimensional (2D) materials and adjacent ions/impurities is essential to realizing 2D material-based hybrid devices. Electrostatic gating via ionic liquids (ILs) has been employed to study the properties of 2D materials. However, the intrinsic interactions between 2D materials and ILs are rarely addressed. This work studies the intersystem Coulomb interactions in IL-functionalized InSe field-effect transistors by displacement current measurements. We uncover a strong self-gating effect that yields a 50-fold enhancement in interfacial capacitance, reaching 550 nF/cm2 in the maximum. Moreover, we reveal the IL-phase-dependent transport characteristics, including the channel current, carrier mobility, and density, substantiating the self-gating at the InSe/IL interface. The dominance of self-gating in the rubber phase is attributed to the correlation between the intra- and intersystem Coulomb interactions, further confirmed by Raman spectroscopy. This study provides insights into the capacitive coupling at the InSe/IL interface, paving the way to developing liquid/2D material hybrid devices.

2.
Opt Express ; 19(15): 14145-51, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21934777

RESUMO

We fabricated current-injection InGaAs quantum-dot microdisk lasers with benzocyclobutene cladding in this work. The microdisk pedestal diameter is carefully designed to facilitate carrier injection and modal control. With this structure, low threshold current of 0.45 mA is achieved at room temperature from a device of 6.5 µm in diameter with single-mode emission from quantum-dot ground states. The negative characteristic temperature T0 of threshold current is observed between 80 K and 150 K. The transition temperature from negative T0 to positive T0 is 150 K which is higher than that of the edge-emitting lasers fabricated from the same wafer. This phenomenon indicates the lower loss level of our microdisk cavities. These microdisk lasers also show positive T0 significantly higher than that of the edge-emitting lasers from the same wafer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA