Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Neuroinflammation ; 21(1): 147, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835057

RESUMO

BACKGROUND: The gut microbiota plays a critical role in regulating brain function through the microbiome-gut-brain axis (MGBA). Dysbiosis of the gut microbiota is associated with neurological impairment in Traumatic brain injury (TBI) patients. Our previous study found that TBI results in a decrease in the abundance of Prevotella copri (P. copri). P. copri has been shown to have antioxidant effects in various diseases. Meanwhile, guanosine (GUO) is a metabolite of intestinal microbiota that can alleviate oxidative stress after TBI by activating the PI3K/Akt pathway. In this study, we investigated the effect of P. copri transplantation on TBI and its relationship with GUO-PI3K/Akt pathway. METHODS: In this study, a controlled cortical impact (CCI) model was used to induce TBI in adult male C57BL/6J mice. Subsequently, P. copri was transplanted by intragastric gavage for 7 consecutive days. To investigate the effect of the GUO-PI3K/Akt pathway in P. copri transplantation therapy, guanosine (GUO) was administered 2 h after TBI for 7 consecutive days, and PI3K inhibitor (LY294002) was administered 30 min before TBI. Various techniques were used to assess the effects of these interventions, including quantitative PCR, neurological behavior tests, metabolite analysis, ELISA, Western blot analysis, immunofluorescence, Evans blue assays, transmission electron microscopy, FITC-dextran permeability assay, gastrointestinal transit assessment, and 16 S rDNA sequencing. RESULTS: P. copri abundance was significantly reduced after TBI. P. copri transplantation alleviated motor and cognitive deficits tested by the NSS, Morris's water maze and open field test. P. copri transplantation attenuated oxidative stress and blood-brain barrier damage and reduced neuronal apoptosis after TBI. In addition, P. copri transplantation resulted in the reshaping of the intestinal flora, improved gastrointestinal motility and intestinal permeability. Metabolomics and ELISA analysis revealed a significant increase in GUO levels in feces, serum and injured brain after P. copri transplantation. Furthermore, the expression of p-PI3K and p-Akt was found to be increased after P. copri transplantation and GUO treatment. Notably, PI3K inhibitor LY294002 treatment attenuated the observed improvements. CONCLUSIONS: We demonstrate for the first time that P. copri transplantation can improve GI functions and alter gut microbiota dysbiosis after TBI. Additionally, P. copri transplantation can ameliorate neurological deficits, possibly via the GUO-PI3K/Akt signaling pathway after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Animais , Camundongos , Masculino , Reabilitação Neurológica/métodos , Prevotella , Microbioma Gastrointestinal/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo
2.
Neurobiol Dis ; 117: 114-124, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29886067

RESUMO

Traumatic brain injury (TBI) causes a high rate of mortality and disability worldwide, and there exists almost none effective drugs to protect against TBI. Neurotoxicity occurring after TBI can be derived from microglia and astrocytes, and causes neuronal death and synapse loss. Bexarotene has been demonstrated to protect neurons in CNS diseases. In the present study, we aimed to investigate the potential role of bexarotene in protecting against neurotoxicity after TBI, as well as the underlying mechanism. The controlled cortical impact (CCI) model was established on adult C57BL/6 mice, followed by intraperitoneal administration of bexarotene for 14 consecutive days. We found that bexarotene improved sensorimotor function and cognitive recovery in CCI mice. In addition, bexarotene decreased neuronal death and synapse loss, as well as inhibited apoptotic cascade. Moreover, bexarotene treatment reduced M1 microglia polarization, microglia-derived pro-inflammatory cytokines, and the number of A1 astrocytes after CCI. These effects of bexarotene were partially abolished by T0070907, an antagonist of peroxisome proliferator-activated receptor gamma (PPARγ). Additionally, bexarotene enhanced nuclear translocation and transcriptional activity of PPARγ. These findings show that bexarotene inhibits neurotoxicity in mice after TBI, at least in part through a PPARγ-dependent mechanism.


Assuntos
Bexaroteno/uso terapêutico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , PPAR gama/metabolismo , Animais , Benzamidas/toxicidade , Bexaroteno/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Piridinas/toxicidade
3.
Int J Med Sci ; 15(10): 1072-1082, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013449

RESUMO

Background: As a major antioxidant in serum, uric acid (UA) was once considered only as the leading cause of gout; however, recent studies have validated its neuroprotective role in ischemic stroke. Because the potential protective effects of UA in traumatic brain injury (TBI) remain largely unknown, this study investigated the role of UA in TBI in both clinical patients and experimental animals. Methods: In TBI patients, serum UA concentrations were measured within 3 days after injury. Clinical outcomes at discharge were classified according to the Glasgow Outcome Scale: good outcome (4-5) and poor outcome (1-3). Risk factors for good outcome were identified via backward logistic regression analysis. For the animal study, a controlled cortical impact (CCI) injury model was established in mice. These mice were given UA at different doses intraperitoneally, and subsequent UA concentrations in mouse serum and brain tissue were determined. Neurological function, oxidative stress, inflammatory response, neuronal maintenance, cerebral blood flow, and lesion size were also assessed. Results: The serum UA level was significantly lower in TBI patients who had a good outcome (P<0.01), and low serum UA was an independent predictor of good outcome after TBI (P<0.01; odds ratio, 0.023; 95% confidence interval, 0.006-0.082). Consistently, decreased levels of serum UA were observed in both TBI patients and CCI animals (P<0.05), whereas the UA concentration was increased in CCI brain tissue (P<0.05). Administration of UA further increased the UA level in brain tissue as compared to that in control animals (P<0.05). Among the different doses administered, 16 mg/kg UA improved sensorimotor functional recovery, spatial learning, and memory in CCI mice (P<0.05). Moreover, oxidative stress and the inflammatory response were inhibited by UA treatment (P<0.05). UA treatment also improved neuronal maintenance and cortical blood flow (P<0.05) but not lesion size (P>0.05). Conclusions: UA acted to attenuate neuronal loss, cerebral perfusion impairment and neurological deficits in TBI mice through suppression of neuronal and vascular oxidative stress. Following TBI, active antioxidant defense in the brain may result in consumption of UA in the serum, and thus, a decreased serum UA level could be predictive of good clinical recovery.


Assuntos
Lesões Encefálicas Traumáticas , Ácido Úrico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Ácido Úrico/sangue , Ácido Úrico/urina
4.
Brain Behav Immun ; 65: 183-194, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28483659

RESUMO

OBJECTIVE: Bexarotene treatments exert neuroprotective effects on mice following traumatic brain injury (TBI). The present study aims to investigate the potential roles of the long noncoding RNA Neat1 in the neuroprotective effects of bexarotene. MATERIALS AND METHODS: Adult male C57BL/6J mice (n=80) and newborn mice (within 24h after birth) (n=20) were used to generate a "controlled cortical impact" (CCI) model and harvest primary cortex neurons, respectively. The HT22 cell line and the BV2 cell line were cultured under "normal" or "oxygen/glucose-deprived" (OGD) conditions. The relationship between RXR-α and the Neat1 promoter was clarified using ChIP-qPCR and dual-luciferase reporter gene assays. The mRNA alterations induced by Neat1 knockdown were measured using next-generation RNA sequencing. Proteins were captured by Neat1, pulled down and subjected to mass spectrometry. The neurological severity score, rotarod test and water maze test were employed to measure the animals' motor and cognitive functions. RESULTS: Bexarotene prominently up-regulated the Neat1 level in an RXR-α-dependent manner. Neat1 knockdown induced significant changes in mRNA expression, and the altered mRNAs were involved in many biological processes, including synapse formation and axon guidance. In primary neurons, Neat1 knockdown inhibited and Neat1 over-expression prompted axon elongation. Multiple proteins, including Pidd1, were captured by Neat1. Neat1 inhibited cell apoptosis and restricted inflammation by capturing Pidd1. The in vitro anti-apoptotic and anti-inflammatory effects of Neat1 were further confirmed in C57BL/6 mice, which resulted in better motor and cognitive function after TBI. CONCLUSION: Bexarotene up-regulates the lncRNA Neat1, which inhibits apoptosis and inflammation, thereby resulting in better functional recovery in mice after TBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Bexaroteno , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , RNA Longo não Codificante/genética , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico , Regulação para Cima/efeitos dos fármacos
5.
Int J Med Sci ; 14(10): 927-936, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28924363

RESUMO

Background: Thrombospondin-1 (TSP-1) is an extracellular matrix protein that plays multiple physiological and pathophysiological roles in the brain. Experimental reports suggest that TSP-1 may have an adverse role in neuronal function recovery under certain injury conditions. However, the roles of TSP-1 in traumatic brain injury (TBI) have not been elucidated. In this study we for the first time investigated the roles of TSP-1 in a controlled cortical impact (CCI) model of TBI in TSP-1 knockout (TSP-1 KO) and wild type (WT) mice. Methods: We examined blood brain-barrier (BBB) damage using at 1 day post-TBI by measuring Evans Blue leakage, and neurological functional recovery at 3 weeks post-TBI by measuring neurological severity score (NSS), wire gripping, corner test and Morris Water Maze (MWM). Mechanistically, we quantified pro-angiogenic biomarkers including cerebral vessel density, vascular endothelial growth factors (VEGF) and angiopoietin-1 (Ang-1) protein expression, synaptic biomarker synaptophysin, and synaptogenesis marker brain-derived neurotrophic factor (BDNF) protein expression in contralateral and ipsilateral (peri-lesion) cortex at 21 days after TBI using immunohistochemistry and Western Blot. Results: TSP-1 is upregulated at early phase of TBI in WT mice. Compared to WT mice, TSP-1 KO (1) significantly worsened TBI-induced BBB leakage at 1 day after TBI; (2) had similar lesion size as WT mice at 3 weeks after TBI; (3) exhibited a significantly worse neurological deficits in motor and cognitive functions; (4) had no significant difference in cerebral vessel density, but significant increase of VEGF and Ang-1 protein expressions in peri-lesion cortex; (5) significantly increased BDNF but not synaptophysin protein level in peri-lesion cortex compared to sham, but both synaptophysin and BDNF expressions were significantly decreased in contralateral cortex compared to WT. Conclusion: Our results suggest that TSP-1 may be beneficial for maintaining BBB integrity in the early phase and functional recovery in late phase after TBI. The molecular mechanisms of TSP-1 in early BBB pathophysiology, and long-term neurological function recovery after TBI need to be further investigated.


Assuntos
Barreira Hematoencefálica/patologia , Lesões Encefálicas/patologia , Córtex Cerebral/fisiopatologia , Cognição/fisiologia , Trombospondina 1/deficiência , Angiopoietina-1/metabolismo , Animais , Biomarcadores/análise , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/lesões , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Recuperação de Função Fisiológica/fisiologia , Sinaptofisina/metabolismo , Trombospondina 1/genética , Fatores de Tempo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Stroke ; 47(1): 196-205, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26628385

RESUMO

BACKGROUND AND PURPOSE: Early brain injury is proposed to be the primary cause of the poor outcome after subarachnoid hemorrhage (SAH), which is closely related to the neural apoptosis. To date, the relationship between peroxisome proliferator-activated receptor ß/δ (PPARß/δ) and nuclear factor-κB/matrix metalloproteinase-9 (NF-κB/MMP-9) pathway, both of which are closely related to apoptotic effects, has been poorly studied in SAH. The present study was undertaken to evaluate the effects of PPARß/δ on early brain injury and NF-κB/MMP-9 pathway after SAH in rats. METHODS: SAH model was established by injecting nonheparinized autologous arterial blood into the prechiasmatic cistern in male Sprague-Dawley rats. Adenoviruses or small interfering RNAs were injected into the right lateral cerebral ventricle to, respectively, up- or downregulate PPARß/δ expression before SAH. All animals were assessed with a neurological score and then killed at 24 hours after SAH surgery. The indexes of brain water content, blood-brain barrier permeability, and apoptosis were used to detect brain injury. The expression of PPARß/δ, NF-κB, and MMP-9 were measured by immunohistochemistry, gelatin zymography, and Western Blot methods, respectively. In addition, GW0742, a specific agonist of PPARß/δ, was used to treat SAH in rats, the effects of which were evaluated by neurological scoring and Evans blue extravasation. RESULTS: Overexpression of PPARß/δ by adenoviruses treatment significantly ameliorated brain injury with improvement in neurological deficits, brain edema, blood-brain barrier impairment, and neural cell apoptosis at 24 hours after SAH in rats, whereas downregulation of PPARß/δ by small interfering RNAs administration resulted in the reverse effects of the above. The expression levels of NF-κB and MMP-9 were markedly downregulated when PPARß/δ increased after PPARß/δ adenovirus transfection and upregulated when PPARß/δ decreased by PPARß/δ small interfering RNAs treatment. Moreover, GW0742 improved neurological deficits and reduced Evans blue extravasation at 24 hours after SAH. CONCLUSIONS: PPARß/δ's overexpression may attenuate early brain injury after rats' SAH administration, which reduces neural apoptosis possibly through blocking NF-κB/MMP-9 pathway.


Assuntos
Lesões Encefálicas/metabolismo , Lesões Encefálicas/prevenção & controle , PPAR delta/biossíntese , PPAR beta/biossíntese , Hemorragia Subaracnóidea/metabolismo , Animais , Lesões Encefálicas/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/patologia
7.
J Neurochem ; 136(5): 1017-25, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26670094

RESUMO

Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in youth, but to date, effective therapies are still lacking. Previous studies revealed a marked response of apolipoprotein J (ApoJ) expression to the brain injury. The aim of this study was to determine the potential roles of ApoJ in functional recovery following TBI. After controlled cortex impact (CCI), a TBI model, in adult wild-type mice, ApoJ expression was up-regulated since 6 h post-injury and sustained for 5 days. Animals infused with recombinant human ApoJ intraventricularly at 30 min prior to CCI showed significantly reduced oxidative stress (3-nitrotyrosine, 4-hydroxynonenal) and complement activation (C5b-9). In addition, ApoJ treatment was shown to suppress the inflammatory response (glial activation, cytokine expression), blood-brain barrier disruption (Evans blue extravasation), and cerebral edema (water content) induced by CCI. Concomitantly, improved neuronal maintenance and neurological behavioral performance were observed in ApoJ-treated mice compared with the vehicle group. These findings support a neuroprotective role of ApoJ via multifunctional pathways, providing a novel and encouraging treatment strategy for TBI. Apolipoprotein J (ApoJ) was up-regulated after controlled cortical impact (CCI). Mice infused with human recombinant ApoJ prior to CCI showed reduced expression of complement and oxidative marker proteins as well as reduced inflammatory response and attenuated blood-brain barrier (BBB) disruption and cerebral edema. Neuronal maintenance and behavioral performance were improved by ApoJ infusion. These findings demonstrated the protective function of ApoJ for traumatic brain injury (TBI) therapy.


Assuntos
Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Clusterina/farmacologia , Fármacos Neuroprotetores/farmacologia , Aldeídos/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Edema Encefálico/tratamento farmacológico , Edema Encefálico/etiologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Clusterina/administração & dosagem , Modelos Animais de Doenças , Infusões Intraventriculares , Masculino , Camundongos Endogâmicos C57BL , Tirosina/análogos & derivados , Tirosina/farmacologia
8.
Stroke ; 45(7): 2085-92, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24916903

RESUMO

BACKGROUND AND PURPOSE: We explored the hypothesis that injured neurons release lipocalin-2 as a help me signal. METHODS: In vivo lipocalin-2 responses were assessed in rat focal cerebral ischemia and human stroke brain samples using a combination of ELISA and immunostaining. In vitro, microglia and astrocytes were exposed to lipocalin-2, and various markers and assays of glial activation were quantified. Functional relevance of neuron-to-glia lipocalin-2 signaling was examined by transferring conditioned media from lipocalin-2-activated microglia and astrocytes onto neurons to see whether activated glia could protect neurons against oxygen-glucose deprivation and promote neuroplasticity. RESULTS: In human stroke samples and rat cerebral ischemia, neuronal expression of lipocalin-2 was significantly increased. In primary cell cultures, exposing microglia and astrocytes to lipocalin-2 resulted in glial activation. In microglia, lipocalin-2 converted resting ramified shapes into a long-rod morphology with reduced branching, increased interleukin-10 release, and enhanced phagocytosis. In astrocytes, lipocalin-2 upregulated glial fibrillary acid protein, brain-derived neurotropic factor, and thrombospondin-1. Conditioned media from lipocalin-2-treated astrocytes upregulated synaptotagmin, and conditioned media from lipocalin-2-treated microglia upregulated synaptophysin and post-synaptic density 95 (PSD95) and protected neurons against oxygen-glucose deprivation. CONCLUSIONS: These findings provide proof of concept that lipocalin-2 is released by injured neurons as a help me distress signal that activates microglia and astrocytes into potentially prorecovery phenotypes.


Assuntos
Proteínas de Fase Aguda/metabolismo , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Córtex Cerebral/metabolismo , Lipocalinas/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Acidente Vascular Cerebral/metabolismo , Idoso , Animais , Biomarcadores/metabolismo , Córtex Cerebral/patologia , Feminino , Humanos , Lipocalina-2 , Masculino , Plasticidade Neuronal/fisiologia , Fenótipo , Ratos , Ratos Wistar , Método Simples-Cego
9.
Mol Neurobiol ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507029

RESUMO

Neuroblasts were first derived from the adult mammalian brains in the 1990s by Reynolds et al. Since then, persistent neurogenesis in the subgranular zone (SGZ) of the hippocampus and subventricular zone (SVZ) has gradually been recognized. To date, reviews on neuroblast migration have largely investigated glial cells and molecular signaling mechanisms, while the relationship between vasculature and cell migration remains a mystery. Thus, this paper underlines the partial biological features of neuroblast migration and unravels the significance and mechanisms of the vasculature in the process to further clarify theoretically the neural repair mechanism after brain injury. Neuroblast migration presents three modes according to the characteristics of cells that act as scaffolds during the migration process: gliophilic migration, neurophilic migration, and vasophilic migration. Many signaling molecules, including brain-derived neurotrophic factor (BDNF), stromal cell-derived factor 1 (SDF-1), vascular endothelial growth factor (VEGF), and angiopoietin-1 (Ang-1), affect vasophilic migration, synergistically regulating the migration of neuroblasts to target areas along blood vessels. However, the precise role of blood vessels in the migration of neuroblasts needs to be further explored. The in-depth study of neuroblast migration will most probably provide theoretical basis and breakthrough for the clinical treatment of brain injury diseases.

10.
Stem Cell Res Ther ; 14(1): 2, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36600294

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is a disease with high mortality and morbidity, which leads to severe neurological dysfunction. Neurogenesis has provided therapeutic options for treating TBI. Brain derived neurotrophic factor (BDNF) plays a key role in neuroblasts migration. We aimed to investigate to the key regulating principle of BDNF in endogenous neuroblasts migration in a mouse TBI model. METHODS: In this study, controlled cortical impact (CCI) mice (C57BL/6J) model was established to mimic TBI. The sham mice served as control. Immunofluorescence staining and enzyme-linked immunosorbent assay were performed on the CCI groups (day 1, 3, 7, 14 and 21 after CCI) and the sham group. All the data were analyzed with Student's t-test or one-way or two-way analysis of variance followed by Tukey's post hoc test. RESULTS: Our results revealed that neuroblasts migration initiated as early as day 1, peaking at day 7, and persisted till day 21. The spatiotemporal profile of BDNF expression was similar to that of neuroblasts migration, and BDNF level following CCI was consistently higher in injured cortex than in subventricular zone (SVZ). Reactive astrocytes account for the major resource of BDNF along the migrating path, localized with neuroblasts in proximity. Moreover, injection of exogenous CC chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1, at random sites promoted neuroblasts migration and astrocytic BDNF expression in both normal and CCI mice (day 28). These provoked neuroblasts can also differentiate into mature neurons. CC chemokine ligand receptor 2 antagonist can restrain the neuroblasts migration after TBI. CONCLUSIONS: Neuroblasts migrated along the activated astrocytic tunnel, directed by BDNF gradient between SVZ and injured cortex after TBI. CCL2 might be a key regulator in the above endogenous neuroblasts migration. Moreover, delayed CCL2 administration may provide a promising therapeutic strategy for late neurogenesis post-trauma.


Assuntos
Lesões Encefálicas Traumáticas , Fator Neurotrófico Derivado do Encéfalo , Animais , Camundongos , Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/terapia , Lesões Encefálicas Traumáticas/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Movimento Celular/fisiologia , Quimiocinas CC/metabolismo , Ligantes , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia
11.
Transl Stroke Res ; 14(4): 530-544, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35749033

RESUMO

Delayed cerebral ischemia (DCI) is the most severe complication after subarachnoid hemorrhage (SAH), and cortical spreading depolarization (CSD) is believed to play a vital role in it. However, the dynamic changes in cerebral blood flow (CBF) in response to CSD in typical SAH models have not been well investigated. Here, SAH was established in mice with endovascular perforation. Subsequently, the spontaneous CBF dropped instantly and then returned to baseline rapidly. After KCl application to the cortex, subsequent hypoperfusion waves occurred across the groups, while a lower average perfusion level was found in the SAH groups (days 1-7). Moreover, in the SAH groups, the number of CSD decreased within day 7, and the duration and spreading velocity of the CSD increased within day 3 and day 14, respectively. Next, we continuously monitored the local field potential (LFP) in the prefrontal cortex. The results showed that the decrease in the percentage of gamma oscillations lasted throughout the whole process in the SAH group. In the chronic phase after SAH, we found that the mice still had cognitive deficits but experienced no obvious tissue damage. In summary, SAH negatively affects the CBF responses to CSD and the spontaneous LFP activity and causes long-term cognitive deficits in mice. Based on these findings, in the specific phase after SAH, DCI is induced or exacerbated more easily by potential causers of CSD in clinical practice (edema, erythrocytolysis, inflammation), which may lead to neurological deterioration.


Assuntos
Isquemia Encefálica , Hemorragia Subaracnóidea , Camundongos , Animais , Isquemia Encefálica/complicações , Infarto Cerebral/complicações , Circulação Cerebrovascular
12.
Neural Regen Res ; 17(8): 1776-1784, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35017438

RESUMO

As a highly evolutionary conserved long non-coding RNA, metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was first demonstrated to be related to lung tumor metastasis by promoting angiogenesis. To investigate the role of MALAT1 in traumatic brain injury, we established mouse models of controlled cortical impact and cell models of oxygen-glucose deprivation to mimic traumatic brain injury in vitro and in vivo. The results revealed that MALAT1 silencing in vitro inhibited endothelial cell viability and tube formation but increased migration. In MALAT1-deficient mice, endothelial cell proliferation in the injured cortex, functional vessel density and cerebral blood flow were reduced. Bioinformatic analyses and RNA pull-down assays validated enhancer of zeste homolog 2 (EZH2) as a downstream factor of MALAT1 in endothelial cells. Jagged-1, the Notch homolog 1 (NOTCH1) agonist, reversed the MALAT1 deficiency-mediated impairment of angiogenesis. Taken together, our results suggest that MALAT1 controls the key processes of angiogenesis following traumatic brain injury in an EZH2/NOTCH1-dependent manner.

13.
Genes Dis ; 9(1): 252-267, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35005122

RESUMO

In early brain injury (EBI) after subarachnoid hemorrhage (SAH), white matter (WM) axonal injury plays a key role in the prognosis of the disease. The purpose of this study was to investigate the effects of phosphatase and tensin homolog deleted on chromosome ten (PTEN) on axonal injury and neuronal apoptosis post-SAH in rats and to find its underlying mechanism. Adeno-associated virus was injected into the lateral ventricle to suppress or promote PTEN. Neural function post-SAH in animals was determined by the modified Garcia score, beam balance, and Rotarod test, and the blood-brain barrier disruption was assessed by the brain water content. Axonal injury post-SAH was observed by TEM and determined by IF, and neuron apoptosis was measured by TUNEL staining. The mechanism was analyzed by Western blot to detect p-PTEN/PTEN, p-AKT/AKT, p-GSK-3ß/GSK-3ß, p-CRMP-2/CRMP-2, axonal injury marker ß-APP and pro- and anti-apoptosis proteins, including Bax and Bcl-2, expression. We found 1. After knocking down PTEN, neuronal apoptosis and axonal injury were alleviated, and nerve function and blood-brain barrier were protected; accordingly, after overexpression of PTEN, neuronal apoptosis and axon damage were aggravated, and nerve function damage and blood-brain barrier damage were increased. 2. PTEN and AKT/GSK-3ß/CRMP-2 pathway were jointly involved in regulating neuronal apoptosis and WM axon injury after SAH. According to our research, PTEN was a negative factor of EBI, and together with the AKT/GSK-3ß/CRMP-2 signaling pathway aggravates neuronal apoptosis and WM axon damage after SAH. Inhibition of PTEN expression may become a new target for SAH treatment.

14.
Oxid Med Cell Longev ; 2022: 8188404, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222805

RESUMO

We previously discovered that traumatic brain injury (TBI) induces significant perturbations in long noncoding RNA (lncRNA) levels in the mouse cerebral cortex, and lncRNA-AK046375 is one of the most significantly changed lncRNAs after TBI. lncRNA-AK046375 overexpression and knockdown models were successfully constructed both in vitro and in vivo. In cultured primary cortical neurons and astrocytes, lncRNA-AK046375 sequestered miR-491-5p, thereby enhancing the expression of metallothionein-2 (MT2), which ameliorated oxidative-induced cell injury. In addition, upregulated lncRNA-AK046375 promoted the recovery of motor, learning, and memory functions after TBI in C57BL/6 mice, and the underlying mechanism may be related to ameliorated apoptosis, inhibited oxidative stress, reduced brain edema, and relieved loss of tight junction proteins at the blood-brain barrier in the mouse brain. Therefore, we conclude that lncRNA-AK046375 enhances MT2 expression by sequestering miR-491-5p, ultimately strengthening antioxidant activity, which ameliorates neurological deficits post-TBI.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Metalotioneína/genética , MicroRNAs/genética , Estresse Oxidativo/genética , RNA Longo não Codificante/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Células Cultivadas , Peróxido de Hidrogênio/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores , Estresse Oxidativo/efeitos dos fármacos , RNA Longo não Codificante/genética , Ativação Transcricional
15.
Neural Regen Res ; 17(3): 577-586, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34380897

RESUMO

MicroRNA-491-5p (miR-491-5p) plays an important role in regulating cell proliferation and migration; however, the effect of miR-491-5p on neovascularization after traumatic brain injury remains poorly understood. In this study, a controlled cortical injury model in C57BL/6 mice and an oxygen-glucose deprivation model in microvascular endothelial cells derived from mouse brain were established to simulate traumatic brain injury in vivo and in vitro, respectively. In the in vivo model, quantitative real-time-polymerase chain reaction results showed that the expression of miR-491-5p increased or decreased following the intracerebroventricular injection of an miR-491-5p agomir or antagomir, respectively, and the expression of miR-491-5p decreased slightly after traumatic brain injury. To detect the neuroprotective effects of miR-491-p, neurological severity scores, Morris water maze test, laser speckle techniques, and immunofluorescence staining were assessed, and the results revealed that miR-491-5p downregulation alleviated neurological dysfunction, promoted the recovery of regional cerebral blood flow, increased the number of lectin-stained microvessels, and increased the survival of neurons after traumatic brain injury. During the in vitro experiments, the potential mechanism of miR-491-5p on neovascularization was explored through quantitative real-time-polymerase chain reaction, which showed that miR-491-5p expression increased or decreased in brain microvascular endothelial cells after transfection with an miR-491-5p mimic or inhibitor, respectively. Dual-luciferase reporter and western blot assays verified that metallothionein-2 was a target gene for miR-491-5p. Cell counting kit 8 (CCK-8) assay, flow cytometry, and 2?,7?-dichlorofluorescein diacetate (DCFH-DA) assay results confirmed that the downregulation of miR-491-5p increased brain microvascular endothelial cell viability, reduced cell apoptosis, and alleviated oxidative stress under oxygen-glucose deprivation conditions. Cell scratch assay, Transwell assay, tube formation assay, and western blot assay results demonstrated that miR-491-5p downregulation promoted the migration, proliferation, and tube formation of brain microvascular endothelial cells through a metallothionein-2-dependent hypoxia-inducible factor-1α/vascular endothelial growth factor pathway. These findings confirmed that miR-491-5p downregulation promotes neovascularization, restores cerebral blood flow, and improves the recovery of neurological function after traumatic brain injury. The mechanism may be mediated through a metallothionein-2-dependent hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway and the alleviation of oxidative stress. All procedures were approved by Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, China (approval No. 2020-304) on June 22, 2020.

16.
Arthroplasty ; 3(1): 21, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236487

RESUMO

PURPOSE: The purpose of this meta-analysis was to review the current evidence in the literature to find out whether the coexisting chronic kidney disease affected infection, revision, transfusion, readmission, mortality, and the length of hospital stay after total knee arthroplasty. METHODS: Medline, PubMed, Embase, and the Cochrane Library were searched from their dates of inception to June 30, 2020. The primary outcomes were postoperative infection, revision, and mortality. The secondary outcomes were transfusion, the length of hospital stay, and readmission. A P value of < 0.05 was deemed to be statistically significant. RESULTS: A total of 881 articles were identified, and 7 articles that met the inclusion criteria were identified to be eligible. The most important finding of our study was that the chronic kidney disease was associated with increased postoperative transfusion (P < 0.05) and mortality (P < 0.05). Meanwhile, the patients with chronic kidney disease were associated with a higher readmission rate, compared to the patients without chronic kidney disease (P < 0.05). However, chronic kidney disease was not associated with high risks for infection (P > 0.05), revision surgeries (P > 0.05), and a prolonged hospital stay (P > 0.05). CONCLUSIONS: After total knee arthroplasty, the patients with coexisting chronic kidney disease carry higher risks of transfusion, mortality, and readmission. However, the chronic kidney disease may not be associated with the risk of infection or revision, nor the duration of hospitalization.

17.
Biomed Res Int ; 2021: 2191926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337002

RESUMO

BACKGROUND: Knee osteoarthritis (KOA) is a common disease in aged adults. Intra-articular (IA) injection of platelet-rich plasma (PRP) therapy is an effective minimally invasive treatment for KOA. We aimed to compare the efficacy and safety of platelet-rich plasma (PRP) with placebo or other conservative treatments. METHODS: We conducted a meta-analysis to identify relevant articles from online register databases such as PubMed, Medline, Embase, and the Cochrane Library. The primary outcomes were the visual analogue scale (VAS) score, Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and International Knee Documentation Committee (IKDC) subjective score. The secondary outcome was the adverse event rate. RESULTS: A total of 895 articles were identified, of which 23 randomized controlled trials that met the inclusion criteria were determined as eligible. Compared with placebo, PRP had a lower VAS score and higher IKDC subjective score at the 6th month after treatment and significantly less WOMAC score during the follow-up period. Compared with oral NSAIDs, PRP gained a lower WOMAC score at the 6th month after treatment. The VAS score decreased after treatment when reaching PRP and CS. As compared to the HA, the VAS score, WOMAC score, and IKDC subjective score all revealed better PRP results. There were no significant differences in adverse event rates comparing PRP versus placebo or HA. Different PRP applications did not show significant differences in VAS score in the 1st month and WOMAC score in the 3rd month after treatment. CONCLUSION: To compare with the conservative treatments mentioned above, PRP is more effective in relieving symptoms. There were no significant differences between triple PRP application and single PRP application in short-term curative effect.


Assuntos
Osteoartrite do Joelho/terapia , Plasma Rico em Plaquetas/metabolismo , Idoso , Anti-Inflamatórios não Esteroides/uso terapêutico , Sulfatos de Condroitina/uso terapêutico , Humanos , Ácido Hialurônico/administração & dosagem , Ácido Hialurônico/uso terapêutico , Injeções Intra-Articulares , Pessoa de Meia-Idade , Resultado do Tratamento , Escala Visual Analógica
18.
Front Neurol ; 12: 654419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690905

RESUMO

Background and Purpose: Primary brain swelling occurs in aneurysmal subarachnoid hemorrhage (aSAH) patients. The absence of a dynamic quantitative method restricts further study of primary brain swelling. This study compared differences in the change rate of brain volume (CRBV) between patients with and without primary brain swelling in the early stage of aSAH. Moreover, the relationship between CRBV and clinical outcomes was evaluated. Methods: Patients hospitalized within 24 h after aSAH were included in this retrospective study. Utilizing a qualitative standard established before the study to recognize primary brain swelling through brain CT after aSAH, clinical outcomes after 3 months of SAH were evaluated with a modified Rankin scale (mRS). The brain volume (BV) of each patient was calculated with a semiautomatic threshold algorithm of 3D-slicer, and the change in brain volume (CIBV) was obtained by subtracting the two extreme values (CIBV = BVmax - BVmin). The CRBV was obtained by CIBV/BVmin × 100%. The CRBV values that predicted unfavorable prognoses were estimated. Results: In total, 130 subjects were enrolled in the study. The mean CRBV in the non-swelling group and swelling group were 4.37% (±4.77) and 11.87% (±6.84), respectively (p < 0.05). CRBV was positively correlated with the length of hospital stay, blood in the ambient cistern, blood in the lateral ventricle, and lateral ventricular volume (Spearman ρ = 0.334; p < 0.001; Pearson ρ = 0.269, p = 0.002; Pearson ρ = 0.278, p = 0.001; Pearson ρ = 0.233, p = 0.008, respectively). Analysis of variance showed significant differences in CIBV, CRBV, blood in the ambient cistern, blood in the lateral ventricle, and lateral ventricular volume among varying modified Fisher scale (mFisher), with higher admission mFisher scale, indicating larger values of these variables. After adjusting for risk factors, the model showed that for every 1% increase in the CRBV, the probability of poor clinical prognosis increased by a factor of 1.236 (95% CI = 1.056-1.446). In the stratified analysis, the odds of worse clinical outcomes increased with increases in the CRBV. Receiver operating characteristic curve analysis showed that HH grade, mFisher scale, and score of CRBV (SCRBV) had diagnostic performance for predicting unfavorable clinical outcomes. Conclusion: Primary brain swelling increases brain volume after aSAH. The CRBV quantified by 3D-Slicer can be used as a volumetric representation of the degree of brain swelling. A larger CRBV in the early stage of aSAH is associated with poor prognosis. The CRBV can be used as a neuroimaging biomarker of early brain injury after bleeding and may be an effective predictor of patients' clinical prognoses.

19.
Front Oncol ; 11: 739733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804928

RESUMO

Yolk sac tumor (YST) is one of rare malignant germ cell tumors (GCTs). Primary intracranial YST, also endodermal sinus tumor (EST), is a quite rare type of brain tumor. Here, we report a case of YST, review the relevant literature, and propose a treatment strategy for this rare tumor. A 6-year-old boy initially manifested symptoms of dizziness and vomiting. Computed tomography (CT) and magnetic resonance imaging (MRI) showed a large irregular oval tumor in the cerebellar hemisphere. We subtotally removed the tumor by microsurgery through the left suboccipital approach. Immunohistochemical staining showed that alpha fetoprotein (AFP) was positive and the Ki-67 proliferation index was high (60%), suggesting a germ cell tumor. After 3 months of follow-up, neither recurrence of tumor nor complications were found in the patient. The diagnosis of YST should be confirmed on the basis of clinical manifestations, neuroimaging and pathological findings. Gross total resection (GTR) is an ideal treatment for YST. However, due to the location of the tumor, GTR is usually difficult, and the rate of postoperative complications is high. This reported case shows that subtotal resection can be a good treatment strategy for YST.

20.
Front Pharmacol ; 12: 708469, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34400908

RESUMO

Microvascular failure is one of the key pathogenic factors in the dynamic pathological evolution after traumatic brain injury (TBI). Our laboratory and others previously reported that Annexin A2 functions in blood-brain barrier (BBB) development and cerebral angiogenesis, and recombinant human Annexin A2 (rA2) protected against hypoxia plus IL-1ß-induced cerebral trans-endothelial permeability in vitro, and cerebral angiogenesis impairment of AXNA2 knock-out mice in vivo. We thereby hypothesized that ANXA2 might be a cerebrovascular therapy candidate that targets early BBB integrity disruption, and subacute/delayed cerebrovascular remodeling after TBI, ultimately improve neurological outcomes. In a controlled cortex impact (CCI) mice model, we found rA2 treatment (1 mg/kg) significantly reduced early BBB disruption at 24 h after TBI; and rA2 daily treatment for 7 days augmented TBI-induced mRNA levels of pro-angiogenic and endothelial-derived trophic factors in cerebral microvessels. In cultured human brain microvascular endothelial cells (HBMEC), through MAPKs array, we identified that rA2 significantly activated Akt, ERK, and CREB, and the activated CREB might be responsible for the rA2-induced VEGF and BDNF expression. Moreover, rA2 administration significantly increased cerebral angiogenesis examined at 14 days and vessel density at 28 days after TBI in mice. Consistently, our results validated that rA2 significantly induced angiogenesis in vitro, evidenced by tube formation and scratched migration assays in HBMEC. Lastly, we demonstrated that rA2 improved long-term sensorimotor and cognitive function, and reduced brain tissue loss at 28 days after TBI. Our findings suggest that rA2 might be a novel vascular targeting approach for treating TBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA