Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(1): e2200297, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35621302

RESUMO

Molecules based on benzimidazolone-dioxazine are known as blue/violet pigments and have been commercialized for decades. However, unfavorable solubility limits the application of these structures as building blocks of conjugated polymers despite their low band gaps. Herein, a series of donor-acceptor conjugated polymers containing soluble benzimidazolone-dioxazine structures as the acceptors and oligothiophene as donors are synthesized and investigated. With increasing numbers of thiophene rings, the steric hindrance diminishes and high molecular weight polymers can be achieved, leading to an improved performance in organic field effect transistor devices. The hole mobility of polymers with three to six thiophene units is in the order of 10-1 cm2 V-1 s -1 . Among all the polymers, polymer P3 with three thiophene units between benzimidazolone-dioxazine structures shows the best hole mobility of 0.4 cm2 V-1 s -1 . Grazing-incidence wide-angle X-ray scattering results reveal that the high mobility of organic field-effect transistors (OFETs) can be accredited by matched donor-acceptor packing in the solid thin films.


Assuntos
Bandagens , Benzimidazóis , Polímeros , Tiofenos
2.
Nanotechnology ; 31(48): 485404, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-32931476

RESUMO

Due to its high capacity (1675 mAh g-1), Li-S batteries have been considered as one of the ideal energy storage systems. The grand challenges of lithium-sulfur batteries are sulfur immobilization and improving electrical conductivity of cathode composite. The carbon-sulfur (C-S) composites and the polar materials (Ni(OH)2, TiO2, MnO2, TiS2, Co9S8, etc) integration have been proven to be two of the most effective routes to achieving good Li-S battery performance. However, each strategy has drawbacks: the C-S composites have low volume density and the polar materials are often lack of electrical conductivity. Therefore, the hybridization of carbon and polar materials shall provide synergistic effects achieving ideal sulfur cathode. Herein, a hybrid material with carbon-coated NiS nanoparticles grown on graphene sheets was synthesized through a hydrothermal reaction followed by two steps of annealing. The obtained composite has a well-balanced ratio between graphene and NiS. An optimized energy density was demonstrated in lithium-sulfur cells.

3.
Langmuir ; 33(34): 8428-8435, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28817284

RESUMO

Herein, we aim to develop a facile method for the fabrication of mesoporous polystyrene (PS) films with controlled porosity and pore size by solvent annealing. A PS polymer film is solvent-annealed using N,N-dimethyl formamide (DMF) vapor for the development of phase separation, followed by rapidly cooling to the preset cryogenic temperature. Subsequently, a nonsolvent (methanol) is introduced to extract the crystalline DMF from the DMF-swollen PS, giving mesoporous PS with a network structure after the removal of DMF. The porosity of the mesoporous PS films can be controlled by the degree of swelling. Most interestingly, the phase separation between PS and DMF at the thin-film state under solvent annealing can be regulated by the annealing time through the spinodal decomposition, giving the development of nanonetwork structure with controlled structural features (i.e., framework size and interframework spacing) at invariant porosity. Consequently, after the removal of DMF, mesoporous PS films with controlled porosity and pore size can be obtained and then used as a template for the fabrication of a variety of nanoporous inorganics by templated syntheses, such as nanoporous SiO2, TiO2, and Ni, providing a cost-effective way to fabricate a range of nanoporous materials with controlled porosity and pore size as well as large specific surface area for aimed applications.

4.
ACS Appl Mater Interfaces ; 11(34): 30694-30702, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31373480

RESUMO

Lithium-ion capacitors (LICs) represent a new type of energy-storage devices, which have combined merits of high energy density Li-ion battery and high power density supercapacitor. Nevertheless, one significant challenge for LICs is the imbalanced kinetics between the fast capacitive cathode and relatively slow intercalation anode that limit the energy-storage performance. Here, the asymmetric LIC devices were developed based on a nitrogen-doped, carbonized zeolitic imidazolate framework (ZIF-8) cathode and a three-dimensional, nano-network-structured, conversion reaction-based Ni/NiO/C anode. These nanostructures associated with both the cathode and anode enable rapid electron and ions transport in the LIC devices, which allows the asymmetric LICs to be operated on either high energy mode (energy density of 114.7 Wh/kg at power density of 98.0 W/kg) or high power mode (power density of 60.1 kW/kg at energy density of 17.6 Wh/kg). The device also exhibited long-term cycle stability with 87% capacitance retention after 12 000 cycles. These results demonstrate that the rational design of nanoporous electrode structures can deliver a balanced, high-performance-activated cZIF-8|Ni/NiO/C-based lithium-ion capacitor.

5.
Nanoscale ; 8(7): 3926-35, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26837410

RESUMO

A design for the fabrication of metallic nanoparticles is presented by thermal dewetting with a chemically heterogeneous nano-template. For the template, we fabricate a nanostructured polystyrene-b-polydimethylsiloxane (PS-b-PDMS) film on a Si|SiO2 substrate, followed by a thermal annealing and reactive ion etching (RIE) process. This gives a template composed of an ordered hexagonal array of SiOC hemispheres emerging in the polystyrene matrix. After the deposition of a FePt film on this template, we utilize the rapid thermal annealing (RTA) process, which provides in-plane stress, to achieve thermal dewetting and structural ordering of FePt simultaneously. Since the template is composed of different composition surfaces with periodically varied morphologies, it offers more tuning knobs to manipulate the nanostructures. We show that both the decrease in the area of the PS matrix and the increase in the strain energy relaxation transfer the dewetted pattern from the randomly distributed nanoparticles into a hexagonal periodic array of L10 FePt nanoparticles. Transmission electron microscopy with the in situ heating stage reveals the evolution of the dewetting process, and confirms that the positions of nanoparticles are aligned with those of the SiOC hemispheres. The nanoparticles formed by this template-dewetting show an average diameter and center-to-center distance of 19.30 ± 2.09 nm and 39.85 ± 4.80 nm, respectively. The hexagonal array of FePt nanoparticles reveals a large coercivity of 1.5 T, much larger than the nanoparticles fabricated by top-down approaches. This approach offers an efficient pathway toward self-assembled nanostructures in a wide range of material systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA