Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Appl Environ Microbiol ; 90(4): e0227423, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38470181

RESUMO

Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.


Assuntos
Antozoários , Rhodobacteraceae , Vibrio , Animais , Branqueamento de Corais , Ecossistema , Disbiose , Antozoários/microbiologia , Recifes de Corais
2.
Environ Res ; 238(Pt 2): 117221, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37775014

RESUMO

Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes that may regulate the composition, function and structure of bacterial community. In coral holobiont, autoinducers signaling mediate the communication pathways between interspecies and intraspecies bacteria, which regulate the expression of the virulence factors that can damage host health. However, under environmental stressors, the interaction between the QS/QQ gene and virulence factors and their role in the bacterial communities and coral bleaching is still not fully clear. To address this question, here, metagenomics method was used to examine the profile of QS/QQ and virulence genes from a deeply sequenced microbial database, obtained from three bleached and non-bleached corals species. The prediction of bacterial genes of bleached samples involved in functional metabolic pathways were remarkably decreased, and the bacterial community structure on bleached samples was significantly different compared to non-bleached samples. The distribution and significant difference in QS/QQ and virulence genes were also carried out. We found that Proteobacteria was dominant bacteria among all samples, and AI-1 system is widespread within this group of bacteria. The identified specific genes consistently exhibited a trend of increased pathogenicity in bleached corals relative to non-bleached corals. The abundance of pathogenicity-associated QS genes, including bapA, pfoA and dgcB genes, were significantly increased in bleached corals and can encode the protein of biofilm formation and the membrane damaging toxins promoting pathogenic adhesion and infection. Similarly, the virulence genes, such as superoxide dismutase (Mn-SOD gene), metalloproteinase (yme1, yydH and zmpB), glycosidases (malE, malF, malG, and malK) and LodAB (lodB) genes significantly increased. Conversely, QQ genes that inhibit QS activity and virulence factors to defense the pathogens, including blpA, lsrK, amiE, aprE and gmuG showed a significant decrease in bleached groups. Furthermore, the significant correlations were found among virulence, QS/QQ genes, and coral associated bacterial community, and the virulence genes interact with key QS/QQ genes, directly or indirectly influence symbiotic bacterial communities homeostasis, thereby impacting coral health. It suggested that the functional and structural divergence in the symbiont bacteria may be partially attribute to the interplay, involving interactions among the host, bacterial communication signal systems, and bacterial virulence factors. In conclusion, these data helped to reveal the characteristic behavior of coral symbiotic bacteria, and facilitated a better understanding of bleaching mechanism from a chemical ecological perspective.


Assuntos
Antozoários , Percepção de Quorum , Animais , Percepção de Quorum/genética , Virulência , Bactérias/metabolismo , Fatores de Virulência
3.
Environ Res ; 212(Pt C): 113443, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35550809

RESUMO

In the marine environment, the interactions among various species based on chemical signals play critical roles in influencing microbial structure and function. Quorum sensing (QS), the well-known signal-dependent communication autoinducer, is an important regulator in complex microbial communities. Here, we explored the QS gene profiles of phycosphere bacteria during a microcosmic phytoplankton bloom using metagenomic sequence data. More than fifteen subtypes of QS systems and 211,980 non-redundant amino acid sequences were collected and classified for constructing a hierarchical quorum-sensing database. The abundance of the various QS subtypes varied at different bloom stages and showed a strong correlation with phycosphere microorganisms. This suggested that QS is involved in regulating the phycosphere microbial succession during an algal bloom. A neutral community model revealed that the QS functional gene community assemblies were driven by stochastic processes. Co-occurrence model analysis showed that the QS gene networks of phycospheric microbes had similar topological structure and functional composition, which is a potential cornerstone for maintaining signal communication and population stabilization among microorganisms. Overall, QS systems have a strong relationship with the development of algal blooms and participate in regulating algal-associated microbial communities as chemical signals. This research reveals the chemical and ecological behavior of algal symbiotic bacteria and expands the current understanding of microbial dynamics in marine algal blooms.


Assuntos
Microbiota , Percepção de Quorum , Bactérias/metabolismo , Eutrofização , Fitoplâncton/genética
5.
Appl Microbiol Biotechnol ; 101(21): 8029-8039, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28929200

RESUMO

Conventional acetone-butanol-ethanol (ABE) fermentation coupled with gas stripping is conducted under strict anaerobic conditions. In this work, a fed-batch ABE fermentation integrated with gas stripping (FAFIGS) system using a non-strict anaerobic butanol-producing symbiotic system, TSH06, was investigated for the efficient production of butanol. To save energy and keep a high gas-stripping efficiency, the integrated fermentation was conducted by adjusting the butanol recovery rate. The gas-stripping efficiency increased when the butanol concentration increased from 6 to 12 g/L. However, in consideration of the butanol toxicity to TSH06, 8 g/L butanol was the optimal concentration for this FAFIGS process. A model for describing the relationship between the butanol recovery rate and the gas flow rate was developed, and the model was subsequently applied to adjust the butanol recovery rate during the FAFIGS process. In the integrated system under non-strict anaerobic condition, relatively stable butanol concentrations of 7 to 9 g/L were achieved by controlling the gas flow rate which varied between 1.6 and 3.5 vvm based on the changing butanol productivity. 185.65 g/L of butanol (267.15 g/L of ABE) was produced in 288 h with a butanol recovery ratio of 97.36%. The overall yield and productivity of butanol were 0.23 g/g and 0.64 g/L/h, respectively. This study demonstrated the feasibility of using FAFIGS under non-strict anaerobic conditions with TSH06. This work is helpful in characterizing the butanol anabolism performance of TSH06 and provides a simple and efficient scheme for butanol production.


Assuntos
Acetona/metabolismo , Reatores Biológicos/microbiologia , Butanóis/isolamento & purificação , Butanóis/metabolismo , Etanol/metabolismo , Anaerobiose , Biotecnologia/métodos , Fermentação
6.
Sci Total Environ ; 946: 174134, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909792

RESUMO

Phaeocystis globosa is among the dominant microalgae associated with harmful algal blooms. P. globosa has a polymorphic life cycle and its ecological success has been attributed to algal colony formation, however, few studies have assessed differences in microbial communities and their functional profiles between intra- and extra-colonies during P. globosa blooms. To address this, environmental and metagenomics tools were used to conduct a time-series analysis of the bacterial composition and metabolic characteristics of intra- and extra-colonies during a natural P. globosa bloom. The results show that bacterial composition, biodiversity, and network interactions differed significantly between intra- and extra-colonies. Dominant extra-colonial bacteria were Bacteroidia and Saccharimonadis, while dominant intra-colonial bacteria included Alphaproteobacteria and Gammaproteobacteria. Despite the lower richness and diversity observed in the intra-colonial bacterial community, relative to extra-colonies, the complexity and interconnectedness of the intra-colonial networks were higher. Regarding bacterial function, more functional genes were enriched in substance metabolism (polysaccharides, iron element and dimethylsulfoniopropionate) and signal communication (quorum sensing, indoleacetic acid-IAA) pathways in intra- than in extra-colonies. Conceptual model construction showed that microbial cooperative synthesis of ammonium, vitamin B12, IAA, and siderophores were strongly related to the P. globosa bloom, particularly in the intra-colonial environment. Overall, our data highlight the differences in bacterial structure and functions within and outside the colony during P. globosa blooms. These findings represent fundamental information indicating that phenotypic heterogeneity is a selective strategy that improves microbial population competitiveness and environmental adaptation, benefiting P. globosa bloom formation and persistence.

7.
Foods ; 13(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672946

RESUMO

Changes to the microbial community during pickled cucumber fermentation were studied using the 16S rDNA technique. The changes of volatile organic compounds (VOCs) during pickled cucumber fermentation were studied by gas chromatograph-ion mobility spectrometry. At the phylum level, Cyanophyta and Proteobacteria were the dominant flora in the natural fermentation group, and Firmicutes were the dominant flora in the added-bacteria fermentation group. At the generic level, the addition of Lactobacillus led to changes in the community of the bacteria in the added-bacterial fermentation group and decreased the species abundance of other bacteria. In total, 75 volatile organic compounds were identified from naturally fermented pickled cucumber, and 60 volatile organic compounds were identified from fermented pickled cucumber with bacterial addition. The main metabolites were esters, aldehydes, acids, alcohols, ketones, alkanes, nitriles, and alkenes. These metabolites will bring their unique aroma components to the pickled cucumber. Metabolomic analysis of the O2PLS model showed that Weissella and Lactobacillus were closely and positively correlated with nine alcohols, six esters, five aldehydes, four acids, three ketones, and one pyrazine. Pseudomonas and norank_f_Mitochondria show a close positive correlation with four kinds of alcohols, two kinds of esters, one kind of aldehyde, and one kind of nitrile.

8.
Environ Sci Pollut Res Int ; 30(7): 17497-17515, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36195812

RESUMO

Based on the traditional "EKC" theory, this paper examines the impact of urban-rural income disparity on environmental pollution in Chinese cities above the prefecture level from 2005 to 2015 using nonlinear models and spatial correlation models and tests the mechanism of action from two perspectives: demand scale and human capital. The results show that the urban-rural income gap has an obvious "inverted U-shaped" trend on environmental pollution. Both demand size and human capital are the main mechanisms affecting the environmental pollution effect of the urban-rural income gap, and the marginal pollution effects of both are "negative first and then positive" as the urban-rural income gap widens. The pollution effects of the urban-rural income gap are significantly spatially correlated at both the national and regional scales. The strength of environmental regulation is an important factor affecting the urban-rural income gap and has a significant "U-shaped" effect on regional pollution through the urban-rural income gap.


Assuntos
Poluição do Ar , Poluição Ambiental , Humanos , Poluição do Ar/análise , China , Cidades , Renda , População Rural , Fatores Socioeconômicos
9.
Front Microbiol ; 14: 1147187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138603

RESUMO

Elucidating the interactions between algal and microbial communities is essential for understanding the dynamic mechanisms regulating algal blooms in the marine environment. Shifts in bacterial communities when a single species dominates algal blooms have been extensively investigated. However, bacterioplankton community dynamics during bloom succession when one algal species shift to another is still poorly understood. In this study, we used metagenomic analysis to investigate the bacterial community composition and function during algal bloom succession from Skeletonema sp. to Phaeocystis sp. The results revealed that bacterial community structure and function shifted with bloom succession. The dominant group in the Skeletonema bloom was Alphaproteobacteria, while Bacteroidia and Gammaproteobacteria dominated the Phaeocystis bloom. The most noticeable feature during the successions was the change from Rhodobacteraceae to Flavobacteriaceae in the bacterial communities. The Shannon diversity indices were significantly higher in the transitional phase of the two blooms. Metabolic reconstruction of the metagenome-assembled genomes (MAGs) showed that dominant bacteria exhibited some environmental adaptability in both blooms, capable of metabolizing the main organic compounds, and possibly providing inorganic sulfur to the host algae. Moreover, we identified specific metabolic capabilities of cofactor biosynthesis (e.g., B vitamins) in MAGs in the two algal blooms. In the Skeletonema bloom, Rhodobacteraceae family members might participate in synthesizing vitamin B1 and B12 to the host, whereas in the Phaeocystis bloom, Flavobacteriaceae was the potential contributor for synthesizing vitamin B7 to the host. In addition, signal communication (quorum sensing and indole-3-acetic acid molecules) might have also participated in the bacterial response to bloom succession. Bloom-associated microorganisms showed a noticeable response in composition and function to algal succession. The changes in bacterial community structure and function might be an internal driving factor for the bloom succession.

10.
J Fungi (Basel) ; 9(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37888296

RESUMO

Coevolution between the pathogen and host plant drives pathogenic effector diversity. However, the molecular mechanism behind host-specific pathogenesis remains to be explored. Here, we present a 43 Mb whole-genome sequence of Endomelanconiopsis endophytica strain LS29, a host-specific pathogen of the common subtropical tree Castanopsis fissa. We described its genome annotations and identified its effector candidates. By performing temporal transcriptome sequencing of E. endophytica on C. fissa during early infection, we found that E. endophytica repressed other microbes in order to attack the tissue of the host by producing antibiotics earlier than 24 h post-inoculation (hpi). Simultaneously, a variety of effectors were secreted to recognize the host plant, but most of them showed a significantly opposing expression regulation trend after 24 hpi, indicating that 24 hpi represents a key time point between host recognition and specific infection. Furthermore, a comparison of isoenzymes showed that only a few effectors were identified as specific effectors, which were involved in hydrolyzing the compounds of the plant cell wall and releasing fatty acids during the early infection of C. fissa. Our results determined host recognition timing and identified a specific catalog of effectors, which are crucial for revealing the molecular mechanism of host-specific pathogenesis.

11.
Sci Total Environ ; 867: 161185, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581277

RESUMO

Reef-building corals are well known for their obligate association with Symbiodiniaceae, and an array of other microbes, including bacteria, fungi, and symbiotic algae (i.e., total microbiome), which together form the coral holobiont. The total microbiome plays an intricate part in maintaining the homeostasis of the coral holobiont and is closely associated with host health. However, the composition of the coral associated microbiome and interaction between its different members remains elusive because few analyses have bridged taxonomically disparate groups. This research gaps have prevented a holistic understanding of the total microbiome. Thus, to simultaneously characterize the bacterial, fungal and symbiotic algal communities associated with different coral species, and explore the relationship between these symbionts and coral health, healthy and bleached tissues from four coral species, Acropora muricata, Galaxea fascicularis, Platygyra daedalea, and Pavona explanulata, were collected from the Xisha Islands of the South China Sea. Using high throughput sequencing, a high degree of host-specificity was observed among bacterial, fungal, and algal groups across coral species. There were no obvious changes in the microbial community structure of apparently healthy and bleached corals, but host bleaching allowed colonization of the holobionts by diverse opportunistic microbes, resulting in a significant elevation in the α-diversity of microbial communities. In addition, co-occurrence analysis of the coral microbiota also identified more complex microbial interactions in bleached corals than in healthy ones. In summary, this study characterized the structure of coral-associated microbiomes across four coral species, and systematically studied microbiome differences between healthy and bleached corals. The findings improve our understanding of the heterogeneity of symbiotic microorganisms and the impact of coral's physiological status on its associated microbial communities composition.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/fisiologia , Especificidade de Hospedeiro , Bactérias , Simbiose , Recifes de Corais
12.
Foods ; 12(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36981091

RESUMO

The microbial compositions and metabolites of fermented sauerkraut with and without the addition of microorganisms have been compared. The OTU clustering, nonvolatile compounds, volatile compounds and associations between bacterial taxa and metabolites were analyzed by 16S rRNA high-throughput sequencing technology, ultra performance liquid chromatography (UPLC), gas chromatography ion mobility mass spectrometry (GC-IMS) and the O2PLS model studies. The results showed that at the phylum level, the microbial species in the four sauerkraut types consisted mainly of the phyla Firmicutes and Proteobacteria, but different modes of microbial addition formed their own unique microbial communities. There were significant differences in the microbial communities among different northeast China sauerkraut samples, and different microbial communities exerted similar effects to inhibit Firmicutes production. At the genus level, sauerkraut without added microorganisms had the lowest microbial diversity. A total of 26 amino acids and 11 organic acids were identified and were more abundant in nonmicrobially fermented sauerkraut; 88 volatile organic compounds were identified in the 4 types of sauerkraut, with the microbially fermented sauerkraut being richer in alcohols, esters and acids. Different brands of sauerkraut contain their own unique flavor compounds. Cystine and tyrosine, ascorbic acid and acetic acid, and alcohols and esters are closely related to a wide range of microorganisms in sauerkraut. Elucidating the correlations among microbiota and metabolites will help guide future improvements in sauerkraut fermentation processes.

13.
Sci Total Environ ; 883: 163609, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37100126

RESUMO

Viruses are widely distributed in marine environments, where they influence the transformation of matter and energy by modulating host metabolism. Driven by eutrophication, green tides are a rising concern in Chinese coastal areas, and are a serious ecological disaster that negatively affects coastal ecosystems and disrupts biogeochemical cycles. Although the composition of bacterial communities in green algae has been investigated, the diversity and roles of viruses in green algal blooms are largely unexplored. Therefore, the diversity, abundance, lifestyle, and metabolic potential of viruses in a natural bloom in Qingdao coastal area were investigated at three different stages (pre-bloom, during-bloom, and post-bloom) by metagenomics analysis. The dsDNA viruses, Siphoviridae, Myoviridae, Podoviridae, and Phycodnaviridae, were found to dominate the viral community. The viral dynamics exhibited distinct temporal patterns across different stages. The composition of the viral community varied during the bloom, especially in populations with low abundance. The lytic cycle was most predominant, and the abundance of lytic viruses increased slightly in the post-bloom stage. The diversity and richness of the viral communities varied distinctly during the green tide, and the post-bloom stage favored viral diversity and richness. The total organic carbon, dissolved oxygen, NO3-, NO2-, PO43-, chlorophyll-a contents, and temperature variably co-influenced the viral communities. The primary hosts included bacteria, algae, and other microplankton. Network analysis revealed the closer links between the viral communities as the bloom progressed. Functional prediction revealed that the viruses possibly influenced the biodegradation of microbial hydrocarbons and carbon by metabolic augmentation via auxiliary metabolic genes. The composition, structure, metabolic potential, and interaction taxonomy of the viromes differed significantly across the different stages of the green tide. The study demonstrated that the ecological event shaped the viral communities during algal bloom, and the viral communities played a significant role in phycospheric microecology.


Assuntos
Ulva , Vírus , Ecossistema , Viroma , Bactérias , Eutrofização , China
14.
Microbiol Spectr ; 11(3): e0491022, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37191552

RESUMO

Bleaching is one of the most relevant factors implicated in the integrity of coral reef ecosystems, with the increasing frequency and intensity of damaging events representing a serious threat to reef biodiversity. Here, we analyzed changes in coral-associated bacteria from three types of non-bleached and bleached scleractinian corals (Acropora digitifera, Galaxea fascicularis, and Porites pukoensis) in Hainan Luhuitou peninsula coastal areas. The community structure of symbiotic bacteria differed significantly among the three apparently healthy corals. The bleached corals had higher bacterial alpha diversity and some specific bacteria genera, including Ruegeria, Methyloceanibacter, Filomicrobium, Halioglobus, Rubripirellula, Rhodopirellula, Silicimonas, Blastopirellula, Sva0996 marine group, Woeseia, and unclassified_c_Gammaproteobacteria, were consistently increased in bleached groups. Network analysis revealed significantly different degrees of modularity between bleached and non-bleached groups at the bacterial genus level, and a higher proportion of links was dominated by positive co-occurrences. Functional prediction analysis illustrated that coral-associated bacteria remained relatively consistent in the bleached and non-bleached groups. Structure equation modeling revealed that the bacterial community diversity and function were directly influenced by host and environment factors. These findings suggested that coral-associated bacterial responses to bleaching occur in a host-dependent manner, informing novel strategies for restoring coral and aiding adaption to bleaching stress. IMPORTANCE Accumulating evidence indicates that coral-associated bacteria play an important role in the health of holobionts. However, the variability of the symbiotic bacterial community structure among coral species with different coral health statuses remains largely unknown. Here, we investigated three apparent non-bleached (healthy) and bleached coral species (sampled in situ), involving related symbiotic bacterial profiles, including composition, alpha diversity, network relationship, and potential function. Structural equation modeling analysis was used to analyze the relationship between coral status and abiotic and biotic factors. The bacterial community structure of different groups was shown to exhibit host-specific traits. Both host and environmental impacts had primary effects on coral-associated microbial communities. Future studies are needed to identify the mechanisms that mediate divergent microbial consortia.


Assuntos
Antozoários , Gammaproteobacteria , Microbiota , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Bactérias , Recifes de Corais
15.
mSystems ; 8(6): e0050523, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37882797

RESUMO

IMPORTANCE: Coral reefs worldwide are facing rapid decline due to coral bleaching. However, knowledge of the physiological characteristics and molecular mechanisms of coral symbionts respond to stress is scarce. Here, metagenomic and metaproteomic approaches were utilized to shed light on the changes in the composition and functions of coral symbiotic bacteria during coral bleaching. The results demonstrated that coral bleaching significantly affected the composition of symbionts, with bacterial communities dominating in bleached corals. Through differential analyses of gene and protein expression, it becomes evident that symbionts experience functional disturbances in response to heat stress. These disturbances result in abnormal energy metabolism, which could potentially compromise the health and resilience of the symbionts. Furthermore, our findings highlighted the highly diverse microbial communities of coral symbionts, with beneficial bacteria providing critical services to corals in stress responses and pathogenic bacteria driving coral bleaching. This study provides comprehensive insights into the complex response mechanisms of coral symbionts under heat stress from the micro-ecological perspective and offers fundamental data for future monitoring of coral health.


Assuntos
Antozoários , Branqueamento de Corais , Animais , Recifes de Corais , Antozoários/metabolismo , Bactérias/genética , Metabolismo Energético
16.
Appl Microbiol Biotechnol ; 95(4): 841-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22707056

RESUMO

Succinic acid is a promising chemical which has a wide range of applications and can be biologically produced. The separation of succinic acid from fermentation broth makes more than 50 % of the total costs in their microbial production. This review summarizes the present state of methods studied for the recovery and purification of biologically produced succinate. Previous studies on the separation of succinic acid primarily include direct crystallization, precipitation, membrane separation, extraction, chromatography, and in situ separation. No single method has proved to be simple and efficient, and improvements are especially needed with regard to yield, purity, and energy consumption. It is argued that separation technologies coupled with upstream technology, in situ product removal, and biorefining strategy deserve more attentions in the future.


Assuntos
Biotecnologia , Ácido Succínico/química , Cromatografia Líquida , Cristalização , Membranas Artificiais , Ácido Succínico/isolamento & purificação
17.
Food Chem ; 374: 131686, 2022 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-34906801

RESUMO

A combination of 16S rDNA and GC-IMS was used to study the changes in the composition of microorganisms and volatile organic compounds (VOCs) during the storage of northeastern Chinese soybean paste. Firmicutes and Actinobacteriota dominated the microbial communities of the soybean paste at the phylum level, bacterial profiles of different samples were different at genus level. Fifty-one VOCs were identified from soybean paste, most of which existed in the early storage stage. Most esters and alcohols decreased with the extension of the storage time, while acids and pyrazines accumulated in the later period of storage. Esters, alcohols, acids and aldehyde compounds are the key substances in the volatile components of soybean paste, which give the soybean paste the sour, sweet, rose, mushroom and smoky flavor characteristics. The biomarker Bacillus-velezensis in soybean paste is directly related to ester features; Kroppenstedtia, Sporolactobacillus-nakayamae, and Corynebacterium-stationis are positively associated with the biosynthesis of aldehydes.


Assuntos
Glycine max , Compostos Orgânicos Voláteis , China , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Paladar , Compostos Orgânicos Voláteis/análise
18.
Sci Total Environ ; 851(Pt 2): 158354, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36041622

RESUMO

Microbial aggregates play key roles in cyanobacterial blooms. Being a bacterial communication mechanism, quorum sensing (QS) synchronizes gene expression in a density-dependent manner and regulates bacterial physiological behavior. However, the regulatory role of QS in the formation of cyanobacteria-associated bacterial aggregates remains poorly understood. Here, we present insight into the role of QS in regulating bacterial aggregate formation in a representative bacterial strain, Novosphingobium sp. ERN07, which was isolated from Microcystis blooms in Lake Taihu. A biosensor assay showed that ERN07 exhibits significant AHL-producing capacity. Biochemical and microscopic analysis revealed that this strain possesses the ability to form aggregated communities. Gene knockout experiments indicated that the AHL-mediated QS system positively regulates bacterial aggregation. The aggregated communities possess the ability to enhance the production of extracellular polymeric substances (EPS), alter EPS composition ratios, and affect biofilm formation. The addition of aggregated substances also has a significant growth-promoting effect on M. aeruginosa. Transcriptomic analysis revealed that the aggregated substances positively regulate photosynthetic efficiency and energy metabolism of M. aeruginosa. These findings show that QS can mediate the aggregation phenotype and associated substrate spectrum composition, contributing to a better understanding of microalgal-bacterial interactions and mechanisms of Microcystis bloom maintenance in the natural environment.


Assuntos
Microcystis , Sphingomonadaceae , Percepção de Quorum , Lagos/microbiologia , Matriz Extracelular de Substâncias Poliméricas , Fenômenos Fisiológicos Bacterianos
19.
Ying Yong Sheng Tai Xue Bao ; 33(9): 2572-2584, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36131675

RESUMO

"Bacteria-zooxanthellae-coral" is a pair of typical triangular relationships in the marine ecosystem. There are complex flows of material, information, and energy in this system. The balance and stability of the symbionts is an important guarantee for maintaining the health of coral reef ecosystems. Many studies have been conducted on the interaction of coral symbionts in the past 20 years, which help clarify the material metabolism and nutrient exchange between "bacteria-zooxanthellae-coral" and their interaction with the environment. Due to the complexity of this symbiotic system, the mechanisms of some phenomena are still not well understood, especially for the communication among the symbionts. The interaction mediated by signal molecules is the internal driving force for the homeostatic maintenance and efficient operation of coral symbionts. In this review, we tried to summarize the latest research progress by focusing on the chemical signaling molecules in coral symbiotic system, including the communications between the bacteria and bacteria, bacteria and corals, bacteria and zooxanthellae, and zooxanthellae and corals. The main signals molecules include quorum sensing (QS) molecules, dimethylsulfoniopropionate (DMSP), glycans signals, lipid signals, and the noncoding RNAs. We focused on the functional mode and ecological significance of signal molecules in symbionts, and selectively exemplified microbial cooperation and competition mediated by QS signals, the interaction between bacteria and corals under the regulation of DMSP, and the response process of corals and zooxanthellae to noncoding RNAs under environmental stresses. We proposed the future research focus and possible directions, including the expansion of research dimensions, the application of new technologies and new methods, and the construction of ecological models. This work would help improve the understanding of interactions between "bacteria-zooxanthellae-coral". The exploration about the ways based on communication language would provide new ideas for the restoration and protection of coral reef ecosystems.


Assuntos
Antozoários , Animais , Bactérias , Comunicação , Recifes de Corais , Ecossistema , Lipídeos , Simbiose/fisiologia
20.
Front Plant Sci ; 13: 1040437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36426155

RESUMO

As a functional probiotic, Bacillus subtilis can promote crop growth and improve nutrient utilization by various mechanisms, so it has been made into bioorganic fertilizer as a replacement for chemical fertilizer. However, the effects of B. subtilis bioorganic fertilizer application on the yield and quality of commercial crops of Brassica chinensis L., the soil physicochemical properties and the microflora have not been clarified. In this study, pot experiments were conducted using Brassica chinensis L. plants with four fertilization treatments: control without fertilization (CK), chemical fertilizer (CF), organic fertilizer (OF), and bioorganic fertilizer containing B. subtilis (BF). After 30 days of pot experiment, the results showed that BF efficiently improved plant height and biomass (1.20- and 1.93-fold, respectively); as well as significantly increasing soil available potassium and pH value. Using high-throughput sequencing, we examined the bacterial and fungal communities in the soil, and found that their diversity was remarkablely reduced in the BF treatment compared to CK group. A principal coordinate analysis also showed a clear separation of bacterial and fungal communities in the BF and CK groups. After application of B. subtilis bioorganic fertilizer, some beneficial bacteria (such as Bacillus and Ammoniphilus) and fungi (Trichoderma and Mortierella) were enriched. A network analysis indicated that bacteria were the dominant soil microbes and the presence of B. subtilis stimulated the colonization of beneficial microbial communities. In addition, predictive functional profiling demonstrated that the application of bioorganic fertilizer enhanced the function of mineral element metabolism and absorption and increased the relative abundance of saprotrophs. Overall, the application of bioorganic fertilizer effectively changed the soil microflora, improved the soil available potassium and pH value, and boosted the yield of Brassica chinensis L. This work has valuable implications for promoting the safe planting of facility vegetables and the sustainable development of green agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA