RESUMO
The omicron variants of SARS-CoV-2 have substantial ability to escape infection- and vaccine-elicited antibody immunity. Here, we investigated the extent of such escape in nine convalescent patients infected with the wild-type SARS-CoV-2 during the first wave of the pandemic. Among the total of 476 monoclonal antibodies (mAbs) isolated from peripheral memory B cells, we identified seven mAbs with broad neutralizing activity to all variants tested, including various omicron subvariants. Biochemical and structural analysis indicated the majority of these mAbs bound to the receptor-binding domain, mimicked the receptor ACE2 and were able to accommodate or inadvertently improve recognition of omicron substitutions. Passive delivery of representative antibodies protected K18-hACE2 mice from infection with omicron and beta SARS-CoV-2. A deeper understanding of how the memory B cells that produce these antibodies could be selectively boosted or recalled can augment antibody immunity against SARS-CoV-2 variants.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Anticorpos Monoclonais , Anticorpos Antivirais , Anticorpos NeutralizantesRESUMO
Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body ß-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or ß-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.
Assuntos
Colite , Receptores Acoplados a Proteínas G , Animais , Camundongos , Regulação Alostérica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Inflamação/tratamento farmacológico , Corpos Cetônicos , Niacina/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Somatic cells can be reprogrammed into pluripotent stem cells (PSCs) by using pure chemicals, providing a different paradigm to study somatic reprogramming. However, the cell fate dynamics and molecular events that occur during the chemical reprogramming process remain unclear. We now show that the chemical reprogramming process requires the early formation of extra-embryonic endoderm (XEN)-like cells and a late transition from XEN-like cells to chemically-induced (Ci)PSCs, a unique route that fundamentally differs from the pathway of transcription factor-induced reprogramming. Moreover, precise manipulation of the cell fate transition in a step-wise manner through the XEN-like state allows us to identify small-molecule boosters and establish a robust chemical reprogramming system with a yield up to 1,000-fold greater than that of the previously reported protocol. These findings demonstrate that chemical reprogramming is a promising approach to manipulate cell fates.
Assuntos
Técnicas de Reprogramação Celular , Células-Tronco Pluripotentes/citologia , Animais , Descoberta de Drogas , Embrião de Mamíferos/citologia , Endoderma/citologia , Endoderma/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Camundongos , Células-Tronco Pluripotentes/efeitos dos fármacosRESUMO
Trace-amine-associated receptors (TAARs), a group of biogenic amine receptors, have essential roles in neurological and metabolic homeostasis1. They recognize diverse endogenous trace amines and subsequently activate a range of G-protein-subtype signalling pathways2,3. Notably, TAAR1 has emerged as a promising therapeutic target for treating psychiatric disorders4,5. However, the molecular mechanisms underlying its ability to recognize different ligands remain largely unclear. Here we present nine cryo-electron microscopy structures, with eight showing human and mouse TAAR1 in a complex with an array of ligands, including the endogenous 3-iodothyronamine, two antipsychotic agents, the psychoactive drug amphetamine and two identified catecholamine agonists, and one showing 5-HT1AR in a complex with an antipsychotic agent. These structures reveal a rigid consensus binding motif in TAAR1 that binds to endogenous trace amine stimuli and two extended binding pockets that accommodate diverse chemotypes. Combined with mutational analysis, functional assays and molecular dynamic simulations, we elucidate the structural basis of drug polypharmacology and identify the species-specific differences between human and mouse TAAR1. Our study provides insights into the mechanism of ligand recognition and G-protein selectivity by TAAR1, which may help in the discovery of ligands or therapeutic strategies for neurological and metabolic disorders.
Assuntos
Proteínas de Ligação ao GTP , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Aminas/metabolismo , Anfetamina/metabolismo , Antipsicóticos/química , Antipsicóticos/metabolismo , Sítios de Ligação , Catecolaminas/agonistas , Catecolaminas/química , Catecolaminas/metabolismo , Microscopia Crioeletrônica , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/ultraestrutura , Ligantes , Simulação de Dinâmica Molecular , Mutação , Polifarmacologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Especificidade da Espécie , Especificidade por SubstratoRESUMO
Glioblastomas (GBMs) are highly vascular and lethal brain tumors that display cellular hierarchies containing self-renewing tumorigenic glioma stem cells (GSCs). Because GSCs often reside in perivascular niches and may undergo mesenchymal differentiation, we interrogated GSC potential to generate vascular pericytes. Here, we show that GSCs give rise to pericytes to support vessel function and tumor growth. In vivo cell lineage tracing with constitutive and lineage-specific fluorescent reporters demonstrated that GSCs generate the majority of vascular pericytes. Selective elimination of GSC-derived pericytes disrupts the neovasculature and potently inhibits tumor growth. Analysis of human GBM specimens showed that most pericytes are derived from neoplastic cells. GSCs are recruited toward endothelial cells via the SDF-1/CXCR4 axis and are induced to become pericytes predominantly by transforming growth factor ß. Thus, GSCs contribute to vascular pericytes that may actively remodel perivascular niches. Therapeutic targeting of GSC-derived pericytes may effectively block tumor progression and improve antiangiogenic therapy.
Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Pericitos/patologia , Animais , Encéfalo/patologia , Neoplasias Encefálicas/irrigação sanguínea , Diferenciação Celular , Células Endoteliais/patologia , Glioblastoma/irrigação sanguínea , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Fator de Crescimento Transformador beta/metabolismo , Transplante HeterólogoRESUMO
Potato (Solanum tuberosum L.) is the world's most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1-4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop.
Assuntos
Produtos Agrícolas , Evolução Molecular , Genoma de Planta , Solanum tuberosum , Produtos Agrícolas/genética , Genoma de Planta/genética , Melhoramento Vegetal , Tubérculos/genética , Solanum tuberosum/genéticaRESUMO
Missing heritability in genome-wide association studies defines a major problem in genetic analyses of complex biological traits1,2. The solution to this problem is to identify all causal genetic variants and to measure their individual contributions3,4. Here we report a graph pangenome of tomato constructed by precisely cataloguing more than 19 million variants from 838 genomes, including 32 new reference-level genome assemblies. This graph pangenome was used for genome-wide association study analyses and heritability estimation of 20,323 gene-expression and metabolite traits. The average estimated trait heritability is 0.41 compared with 0.33 when using the single linear reference genome. This 24% increase in estimated heritability is largely due to resolving incomplete linkage disequilibrium through the inclusion of additional causal structural variants identified using the graph pangenome. Moreover, by resolving allelic and locus heterogeneity, structural variants improve the power to identify genetic factors underlying agronomically important traits leading to, for example, the identification of two new genes potentially contributing to soluble solid content. The newly identified structural variants will facilitate genetic improvement of tomato through both marker-assisted selection and genomic selection. Our study advances the understanding of the heritability of complex traits and demonstrates the power of the graph pangenome in crop breeding.
Assuntos
Variação Genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Solanum lycopersicum , Alelos , Produtos Agrícolas/genética , Genoma de Planta/genética , Desequilíbrio de Ligação , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismoRESUMO
Cellular reprogramming can manipulate the identity of cells to generate the desired cell types1-3. The use of cell intrinsic components, including oocyte cytoplasm and transcription factors, can enforce somatic cell reprogramming to pluripotent stem cells4-7. By contrast, chemical stimulation by exposure to small molecules offers an alternative approach that can manipulate cell fate in a simple and highly controllable manner8-10. However, human somatic cells are refractory to chemical stimulation owing to their stable epigenome2,11,12 and reduced plasticity13,14; it is therefore challenging to induce human pluripotent stem cells by chemical reprogramming. Here we demonstrate, by creating an intermediate plastic state, the chemical reprogramming of human somatic cells to human chemically induced pluripotent stem cells that exhibit key features of embryonic stem cells. The whole chemical reprogramming trajectory analysis delineated the induction of the intermediate plastic state at the early stage, during which chemical-induced dedifferentiation occurred, and this process was similar to the dedifferentiation process that occurs in axolotl limb regeneration. Moreover, we identified the JNK pathway as a major barrier to chemical reprogramming, the inhibition of which was indispensable for inducing cell plasticity and a regeneration-like program by suppressing pro-inflammatory pathways. Our chemical approach provides a platform for the generation and application of human pluripotent stem cells in biomedicine. This study lays foundations for developing regenerative therapeutic strategies that use well-defined chemicals to change cell fates in humans.
Assuntos
Diferenciação Celular , Reprogramação Celular , Células-Tronco Pluripotentes Induzidas , Linhagem da Célula , Humanos , Células-Tronco Pluripotentes Induzidas/citologiaRESUMO
Breast cancer is a highly heterogeneous disease with varied subtypes, prognoses and therapeutic responsiveness. Human leukocyte antigen class I (HLA-I) shapes the immunity and thereby influences the outcome of breast cancer. However, the implications of HLA-I variations in breast cancer remain poorly understood. In this study, we established a multiomics cohort of 1156 Chinese breast cancer patients for HLA-I investigation. We calculated four important HLA-I indicators in each individual, including HLA-I expression level, somatic HLA-I loss of heterozygosity (LOH), HLA-I evolutionary divergence (HED) and peptide-binding promiscuity (Pr). Then, we evaluated their distribution and prognostic significance in breast cancer subtypes. We found that the four breast cancer subtypes had distinct features of HLA-I indicators. Increased expression of HLA-I and LOH were enriched in triple-negative breast cancer (TNBC), while Pr was relatively higher in hot tumors within TNBCs. In particular, a higher Pr indicated a better prognosis in TNBCs by regulating the infiltration of immune cells and the expression of immune molecules. Using the matched genomic and transcriptomic data, we found that mismatch repair deficiency-related mutational signature and pathways were enriched in low-Pr TNBCs, suggesting that targeting mismatch repair deficiency for synthetic lethality might be promising therapy for these patients. In conclusion, we presented an overview of HLA-I indicators in breast cancer and provided hints for precision treatment for low-Pr TNBCs.
Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Antígenos de Histocompatibilidade Classe I , Síndromes Neoplásicas Hereditárias , Neoplasias de Mama Triplo Negativas , Humanos , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Mutação , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
The evolutionarily conserved C-terminal binding protein (CtBP) has been well characterized as a transcriptional co-repressor. Herein, we report a previously unreported function for CtBP, showing that lowering CtBP dosage genetically suppresses Polycomb group (PcG) loss-of-function phenotypes while enhancing that of trithorax group (trxG) in Drosophila, suggesting that the role of CtBP in gene activation is more pronounced in fly development than previously thought. In fly cells, we show that CtBP is required for the derepression of the most direct PcG target genes, which are highly enriched by homeobox transcription factors, including Hox genes. Using ChIP and co-IP assays, we demonstrate that CtBP is directly required for the molecular switch between H3K27me3 and H3K27ac in the derepressed Hox loci. In addition, CtBP physically interacts with many proteins, such as UTX, CBP, Fs(1)h and RNA Pol II, that have activation roles, potentially assisting in their recruitment to promoters and Polycomb response elements that control Hox gene expression. Therefore, we reveal a prominent activation function for CtBP that confers a major role for the epigenetic program of fly segmentation and development.
Assuntos
Proteínas de Drosophila , Genes Homeobox , Oxirredutases do Álcool , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genéticaRESUMO
As emerging and re-emerging pathogens, filoviruses, especially Ebola virus (EBOV), pose a great threat to public health and require sustained attention and ongoing surveillance. More vaccines and antiviral drugs are imperative to be developed and stockpiled to respond to unpredictable outbreaks. Virus-like vesicles, generated by alphavirus replicons expressing homogeneous or heterogeneous glycoproteins (GPs), have demonstrated the capacity of self-propagation and shown great potential in vaccine development. Here, we describe a novel class of EBOV-like vesicles (eVLVs) incorporating both EBOV GP and VP40. The eVLVs exhibited similar antigenicity as EBOV. In murine models, eVLVs were highly attenuated and elicited robust GP-specific antibodies with neutralizing activities. Importantly, a single dose of eVLVs conferred complete protection in a surrogate EBOV lethal mouse model. Furthermore, our VLVs strategy was also successfully applied to Marburg virus (MARV), the representative member of the genus Marburgvirus. Taken together, our findings indicate the feasibility of an alphavirus-derived VLVs strategy in combating infection of filoviruses represented by EBOV and MARV, which provides further evidence of the potential of this platform for universal live-attenuated vaccine development.
Assuntos
Anticorpos Antivirais , Modelos Animais de Doenças , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Animais , Ebolavirus/imunologia , Camundongos , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Anticorpos Antivirais/imunologia , Vacinas contra Ebola/imunologia , Humanos , Anticorpos Neutralizantes/imunologia , Glicoproteínas/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Marburgvirus/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Feminino , Proteínas da Matriz ViralRESUMO
Advances in genomic technology led to a more focused pattern for the distribution of chromosomal proteins and a better understanding of their functions. The recent development of the CUT&RUN technique marks one of the important such advances. Here we develop a modified CUT&RUN technique that we termed nanoCUT&RUN, in which a high affinity nanobody to GFP is used to bring micrococcal nuclease to the binding sites of GFP-tagged chromatin proteins. Subsequent activation of the nuclease cleaves the chromatin, and sequencing of released DNA identifies binding sites. We show that nanoCUT&RUN efficiently produces high quality data for the TRL transcription factor in Drosophila embryos, and distinguishes binding sites specific between two TRL isoforms. We further show that nanoCUT&RUN dissects the distributions of the HipHop and HOAP telomere capping proteins, and uncovers unexpected binding of telomeric proteins at centromeres. nanoCUT&RUN can be readily applied to any system in which a chromatin protein of interest, or its isoforms, carries the GFP tag.
Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/genética , Proteínas de Drosophila/metabolismo , Telômero/genética , Telômero/metabolismo , Fatores de Transcrição/genéticaRESUMO
West Nile virus (WNV), an arthropod-borne flavivirus, can cause severe symptoms, including encephalitis, and death, posing a threat to public health and the economy. However, there is still no approved treatment or vaccine available for humans. Here, we developed a novel vaccine platform based on a classical insect-specific flavivirus (cISF) YN15-283-02, which was derived from Culicoides. The cISF-WNV chimera was constructed by replacing prME structural genes of the infectious YN15-283-02 cDNA clone with those of WNV and successfully rescued in Aedes albopictus cells. cISF-WNV was nonreplicable in vertebrate cells and nonpathogenic in type I interferon receptor (IFNAR)-deficient mice. A single-dose immunization of cISF-WNV elicited considerable Th1-biased antibody responses in C57BL/6 mice, which was sufficient to offer complete protection against lethal WNV challenge with no symptoms. Our studies demonstrated the potential of the insect-specific cISF-WNV as a prophylactic vaccine candidate to prevent infection with WNV.
Assuntos
Aedes , Flavivirus , Vacinas , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Camundongos , Humanos , Vírus do Nilo Ocidental/genética , Flavivirus/genética , Febre do Nilo Ocidental/prevenção & controle , Anticorpos Antivirais , Camundongos Endogâmicos C57BLRESUMO
Barley (1,3;1,4)-ß-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-ß-d-glucanase, enabling the hydrolysis of (1,3;1,4)-ß-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-ß-d-glucan endohydrolase [(1,3;1,4)-ß-d-glucanase] isoenzyme EII (HvEII) and (1,3)-ß-d-glucan endohydrolase [(1,3)-ß-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-ß-d-glucanase and one variant that hydrolyzed both (1,3)-ß-d-glucans and (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-ß-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-ß-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-ß-d-glucans or (1,3)-ß-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-ß-d-glucans and (1,3)-ß-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.
Assuntos
Hordeum , Hordeum/enzimologia , Hordeum/genética , Especificidade por Substrato , Mutagênese Sítio-Dirigida , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Glucanos/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/química , Mutagênese , beta-Glucanas/metabolismoRESUMO
It is well-recognized that blood flow at branches and bends of arteries generates disturbed shear stress, which plays a crucial in driving atherosclerosis. Flow-generated fluid shear stress (FSS), as one of the key hemodynamic factors, is appreciated for its critical involvement in regulating angiogenesis to facilitate wound healing and tissue repair. Endothelial cells can directly sense FSS but the mechanobiological mechanism by which they decode different patterns of FSS to trigger angiogenesis remains unclear. In the current study, laminar shear stress (LSS, 15 dyn/cm2) was employed to mimic physiological blood flow, while disturbed shear stress (DSS, ranging from 0.5 ± 4 dyn/cm2) was applied to simulate pathological conditions. The aim was to investigate how these distinct types of blood flow regulated endothelial angiogenesis. Initially, we observed that DSS impaired angiogenesis and downregulated endogenous vascular endothelial growth factor B (VEGFB) expression compared to LSS. We further found that the changes in membrane protein, migration and invasion enhancer 1 (MIEN1) play a role in regulating ERK/MAPK signaling, thereby contributing to endothelial angiogenesis in response to FSS. We also showed the involvement of MIEN1-directed cytoskeleton organization. These findings suggest the significance of shear stress in endothelial angiogenesis, thereby enhancing our understanding of the alterations in angiogenesis that occur during the transition from physiological to pathological blood flow.
Assuntos
Angiogênese , Células Endoteliais , Hemodinâmica , Humanos , Aterosclerose/patologia , Células Cultivadas , Células Endoteliais/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Estresse Mecânico , Fator B de Crescimento do Endotélio Vascular/metabolismoRESUMO
BACKGROUND: Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history. RESULT: We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae. CONCLUSIONS: We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.
Assuntos
Genoma de Cloroplastos , Theaceae , Filogenia , Theaceae/genética , Genômica , Códon/genética , Cloroplastos/genética , RNA de Transferência/genética , CháRESUMO
Flavin adenine dinucleotide (FAD), serving as a light-absorbing coenzyme factor, can undergo conformationally isomeric complexation within different enzymes to form various enzyme-coenzyme complexes, which exhibit photocatalytic functions that play a crucial role in physiological processes. Constructing an artificial photofunctional system using FAD or its derivatives can not only develop biocompatible photocatalytic systems with excellent activities but also further enhance our understanding of the role of FAD in biological systems. Here, we demonstrate a supramolecular approach for constructing an artificial enzyme-coenzyme-type host-guest complex with photoinduced catalytic function in water. First, we have designed and synthesized a water-soluble tetraphenylethene (TPE)-based octacationic molecular cage (1) with a large and flexible cavity, which can adaptively encapsulate with two FAD molecules with "U-shaped" conformation (uFAD) to form a 1:2 host-guest complex (1âuFAD2) in water. Second, based on the conformationally isomeric complexation of FAD within 1, the 1âuFAD2 complex facilitates electron and energy transfers to molecular oxygen upon the white-light illumination, efficiently producing reactive oxygen species (ROS) such as superoxide radical (O2â¢-) and singlet oxygen (1O2). To our knowledge, the 1âuFAD2 complex acts as a photocatalyst to achieve the highest turnover frequency (TOF) of 35.6 min-1 for the photocatalytic oxidation reaction of NADH via a photoinduced superoxide radical catalysis mechanism in an aqueous medium. At last, combining the cytotoxic effects of ROS and the disruption of the intracellular redox balance involving NADH, 1âuFAD2 as a supramolecular photosensitizer displays an excellent oxygen-independent photocatalysis-assisted photodynamic therapy in hypoxic tumors.
RESUMO
Sorafenib, an anticancer drug, has been shown to induce ferroptosis in cancer cells. However, resistance to sorafenib greatly limits its therapeutic efficacy, and the exact mechanism of resistance is not fully understood. This study investigated the role of N-Acetyltransferase 10 (NAT10) in influencing the anticancer activity of sorafenib in nasopharyngeal carcinoma (NPC) and its molecular mechanism. NAT10 expression was significantly upregulated in NPC. Mechanistically, NAT10 promotes proteins of solute carrier family 7 member 11 (SLC7A11) expression through ac4C acetylation, inhibiting sorafenib-induced ferroptosis in NPC cells. The combined application of sorafenib and the NAT10 inhibitor remodelin significantly inhibits SLC7A11 expression and promotes ferroptosis in NPC cells. In vivo knockout of NAT10 inhibited the growth of sorafenib-resistant NPC. Our findings suggest that NAT10 inhibition might be a promising therapeutic approach to enhance the anticancer activity of sorafenib.
Assuntos
Sistema y+ de Transporte de Aminoácidos , Resistencia a Medicamentos Antineoplásicos , Ferroptose , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Sorafenibe , Sorafenibe/farmacologia , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/genética , Animais , Camundongos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Antineoplásicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Acetiltransferases/metabolismo , Acetiltransferases/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Masculino , Acetilação/efeitos dos fármacos , FemininoRESUMO
Nobiletin is a natural flavonoid found in citrus fruits with beneficial effects, including anti-inflammatory, anti-cancer and anti-oxidation effects. The aim of this study was to investigate whether nobiletin improves mitochondrial function in porcine oocytes and examine the underlying mechanism. Oocytes enclosed by cumulus cells were cultured in TCM-199 for 44 h with 0.1% dimethyl sulfoxide (control), or supplemented with 5, 10, 25, and 50 µM of nobiletin (Nob5, Nob10, Nob25, and Nob50, respectively). Oocyte maturation rate was significantly enhanced in Nob10 (70.26 ± 0.45%) compared to the other groups (control: 60.12 ± 0.47%; Nob5: 59.44 ± 1.63%; Nob25: 63.15 ± 1.38%; Nob50: 46.57 ± 1.19%). The addition of nobiletin reduced the levels of reactive oxygen species and increased glutathione levels. Moreover, Nob10 promoted mitochondrial biogenesis by upregulating the protein levels of sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α). This resulted in an increase in the number of active mitochondria, mitochondrial DNA copy number, mitochondrial membrane potential, and ATP production, thereby enhancing mitochondrial function. The protein level of p53 decreased, followed by the phosphorylation of B-cell lymphoma 2, suggesting a reduction in mitochondria-mediated apoptosis in the Nob10 group. Additionally, the release of cytochrome c from the mitochondria was significantly diminished along with a decrease in the protein expression of caspase 3. Thus, nobiletin has a great potential to promote the in vitro maturation of porcine oocytes by suppressing oxidative stress and promoting mitochondrial function through the upregulation of the SIRT1/PGC-1α signaling pathway.
Assuntos
Flavonas , Mitocôndrias , Sirtuína 1 , Animais , Suínos , Sirtuína 1/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Oócitos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismoRESUMO
BACKGROUND: Gastroesophageal reflux disease (GERD) is a common condition characterized by the reflux of stomach contents into the esophagus. Despite its widespread prevalence worldwide, the causal link between GERD and various cancer risks has not been fully established, and past medical research has often underestimated or overlooked this relationship. METHODS: This study performed Mendelian randomization (MR) to investigate the causal relationship between GERD and 19 different cancers. We leveraged data from 129,080 GERD patients and 473,524 controls, along with cancer-related data, obtained from the UK Biobank and various Genome-Wide Association Studies (GWAS) consortia. Single nucleotide polymorphisms (SNPs) associated with GERD were used as instrumental variables, utilizing methods such as inverse variance weighting, weighted median, and MR-Egger to address potential pleiotropy and confounding factors. RESULTS: GERD was significantly associated with higher risks of nine types of cancer. Even after adjusting for all known risk factors-including smoking, alcohol consumption, major depression, and body mass index (BMI)-these associations remained significant, with higher risks for most cancers. For example, the adjusted risk for overall lung cancer was (OR, 1.23; 95% CI: 1.14-1.33), for lung adenocarcinoma was (OR, 1.18; 95% CI: 1.03-1.36), for lung squamous cell carcinoma was (OR, 1.35; 95% CI: 1.19-1.53), and for oral cavity and pharyngeal cancer was (OR, 1.73; 95% CI: 1.22-2.44). Especially noteworthy, the risk for esophageal cancer increased to (OR, 2.57; 95% CI: 1.23-5.37). Mediation analyses further highlighted GERD as a significant mediator in the relationships between BMI, smoking, major depression, and cancer risks. CONCLUSIONS: This study identifies a significant causal relationship between GERD and increased cancer risk, highlighting its role in cancer development and underscoring the necessity of incorporating GERD management into cancer prevention strategies.