Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 15(41): 8201-8209, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31588459

RESUMO

In this work, we study the structure transformations of cylinder-forming polystyrene-block-polydimethylsiloxane (PS31k-b-PDMS14.5k) confined in cylindrical nanopores. PS-b-PDMS nanotubes, nanospheres, and curved nanodiscs are ingeniously prepared by a facile template wetting strategy using anodic aluminum oxide (AAO) templates. Quantitative analyses of the structure transformations from nanospheres to curved nanodiscs are also conducted, showing that the lengths of the curved nanodiscs can be controlled by adjusting the annealing temperature and time. Furthermore, the PDMS domains of the nanostructures can be selectively etched using HF solutions, generating porous PS nanostructures. This work not only offers versatile routes to prepare block copolymer nanostructures with controlled shapes but also provides a deeper understanding of the structure transformation of block copolymers in confined geometries.

2.
Soft Matter ; 14(1): 35-41, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29210440

RESUMO

Block copolymers have attracted great attention because of their abilities to self-assemble into well-ordered microphase-separated structures. To generate nanopatterns of block copolymers with long-range ordering and low-defect densities in shorter time scales, microwave annealing has recently been applied. Microwave annealing, however, has so far only been used for block copolymer bulks and thin films. In this work, we discover that microwave annealing can be successfully applied to three-dimensional block copolymer nanostructures by studying the infiltration and microphase separation of block copolymers in cylindrical nanopores upon microwave irradiation. Cylinder-forming and lamella-forming poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) are introduced into the nanopores of anodic aluminum oxide (AAO) templates. In addition, AAO templates with different pore sizes are used to study the effect of the commensurabilities between the pore diameters and the repeating periods of the block copolymers on the morphologies of the block copolymer nanostructures.

3.
Soft Matter ; 13(32): 5428-5436, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28702567

RESUMO

Block copolymer micelles have been extensively discussed for many decades because of their applications, such as lithography and drug delivery. However, controlling the morphologies of nanostructure assembly using block copolymer micelles as building elements remains a great challenge. In this work, we developed a novel route to induce micelle assembly in confined geometries. Polystyrene-block-polydimethylsiloxane (PS-b-PDMS) micelle solutions were used to prepare micelle nanostructures, and the critical parameters affecting the morphologies were determined. Micelle nanorods, micelle nanospheres, and multi-component nanopeapods were prepared by wetting anodic aluminum oxide (AAO) templates with micelle solutions. Rayleigh-instability-driven transformation was discovered to play an important role in controlling the morphologies of the micelle nanostructures. This study not only proposes a versatile approach to preparing block copolymer micelle nanostructures, but it also provides deeper insight into the controlling factors of block copolymer micelle morphologies in cylindrical confinement.

4.
Langmuir ; 32(8): 2110-6, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831764

RESUMO

We demonstrate a novel wetting method to prepare hierarchical polymer films with polymer nanotubes on selective regions. This strategy is based on the selective wetting abilities of polymer chains, annealed in different solvent vapors, into the nanopores of porous templates. Phase-separated films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), two commonly used polymers, are prepared as a model system. After anodic aluminum oxide (AAO) templates are placed on the films, the samples are annealed in vapors of acetic acid, in which the PMMA chains are swollen and wet the nanopores of the AAO templates selectively. As a result, hierarchical polymer films containing PMMA nanotubes can be obtained after the AAO templates are removed. The distribution of the PMMA nanotubes of the hierarchical polymer films can also be controlled by changing the compositions of the polymer blends. This work not only presents a novel method to fabricate hierarchical polymer films with polymer nanotubes on selective regions, but also gives a deeper understanding in the selective wetting ability of polymer chains in solvent vapors.

5.
Soft Matter ; 12(39): 8087-8092, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27714291

RESUMO

The microphase separation behavior of block copolymers confined in cylindrical nanopores has been extensively investigated. Recently, the solvent-annealing-induced nanowetting in templates (SAINT) method has been demonstrated to be a versatile approach for the infiltration of block copolymers into the nanopores of porous templates. The function of the annealing solvents, however, is still not well understood, especially in the morphology control of the fabricated block copolymer nanostructures. In this work, we elucidate the function of the annealing solvents in the SAINT method using a lamella-forming block copolymer, polystyrene-block-polydimethylsiloxane (PS-b-PDMS), and anodic aluminum oxide (AAO) templates. By changing the composition of the annealing solvents, different morphologies such as the concentric lamellar morphology, the winding cylinder morphology, and the irregular hybrid morphology are observed, mainly caused by the annealing-solvent-induced volume change. The morphology of the block copolymer nanostructures can be further confirmed using an HF solution to remove the PDMS domain selectively.

6.
Macromol Rapid Commun ; 37(24): 2037-2044, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27859816

RESUMO

To manipulate the functions of nanomaterials more precisely for diverse applications, the controllability and critical influencing factors of their properties must be thoroughly investigated. In this work, the macroscopic and microscopic effects are studied on the photophysical properties of various pyrene-ended poly(styrene-block-methyl methacrylate) nanostructures. Fluorescent polymer nanospheres, nanorods, and nanotubes are prepared by different template-based methods using anodic aluminum oxide membranes. Chain arrangements and conformations are determined as the key factors affecting the photophysical properties of the fluorescent polymer nanostructures. This work not only gives a deeper understanding of the effects on the photophysical properties of polymer nanomaterials influenced by morphologies, chain arrangements, and chain conformations, but also provides a reference for designing proper fluorescent nanostructures for specific applications.


Assuntos
Óxido de Alumínio/química , Corantes Fluorescentes/química , Membranas Artificiais , Nanopartículas/química , Polimetil Metacrilato/química , Poliestirenos/química
7.
Macromol Rapid Commun ; 37(22): 1825-1831, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27611838

RESUMO

Anisotropic polymer particles such as Janus particles have attracted significant attention in recent years because of their unique properties and unusual self-assembly behavior. Most anisotropic polymer particles synthesized so far, however, only have different chemical regions compartmentalized on the particles. It remains a great challenge to fabricate anisotropic polymer particles with different shapes within a single particle. A novel approach is developed to prepare anisotropic polymer particles that contain two hemispheres with different curvatures by annealing polystyrene microspheres on poly(vinyl alcohol) films. During the annealing process, the polymer microspheres gradually sink into the polymer films and transform to asymmetric polymer particles, driven by the surface and interfacial tensions of the polymers. Selective removal techniques are also used to confirm the morphologies of the asymmetric particles.

8.
ACS Appl Mater Interfaces ; 9(24): 21010-21016, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28558189

RESUMO

The microphase separation of block copolymers in confined geometries has been widely investigated over the last few decades. The controllability and versatility of the confinement-induced morphologies, however, are still difficult to be achieved because of the limited experimental parameters in the process of fabricating the confined nanostructures. In this work, we study the morphology transitions of lamellae-forming polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanorods confined in the nanopores of anodic aluminum oxide (AAO) templates. The nanorods are formed by solvent-assisted template wetting, and the morphologies are compared to those in the bulk state. By blending PS-b-PDMS with homopolystyrene (hPS), the morphologies of the nanorods can be controlled because of the changes of the effective volume fractions. Special morphology transitions from concentric lamellar morphology, to multihelical morphology, and finally to spherical-like morphology are observed by increasing the weight ratios of hPS. hPS with different molecular weights is also applied to investigate the effect of hPS on the morphologies of the PS-b-PDMS/hPS blend nanostructures. The unusual morphologies are further confirmed by a selective removal process, which also generates nanochannels for possible refilling with functional materials.

9.
J Dent ; 34(3): 221-9, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16112335

RESUMO

OBJECTIVES: The structural stability and adhesive strength of a large-cavity premolar with a CEREC restoration is a frequent problem in long-term use. This study sought to determine whether an additional reinforced slot could increase tooth/ceramic retention using finite element (FE) analysis and fracture testing. METHODS: The cavity was designed in a typical MODL restoration failure shape when the lingual cusp has been lost. Two FE restored-tooth models with different cavity designs were created using image processing, contour stacking, and mesh generation. Interfacial (normal and shear) stresses were then calculated with and without the slot design for restored teeth under lateral and axial forces and different interfacial conditions (bonded and de-bonding). For validation, a fracture experiment was performed with and without reinforced slot designs for large ceramic CEREC restorations. RESULTS: The maximum stresses at the buccal wall increased when a lateral occlusal force acted on the restored tooth with a slot design. Conversely, the interfacial stresses decreased when the restored tooth received a uniform axial occlusal force. After de-bonding on the buccal tooth/ceramic interface, the stresses increased by an average factor of three over those obtained with a bonded interface. The fracture forces were consistent with the tendencies predicted in FE analyses. CONCLUSIONS: An additional reinforced slot for the CEREC restoration of a large cavity could increase retention when a restored tooth receives an axial occlusal load. However, the benefits of a slot seem to be doubtful for a premolar often subjected to a lateral load.


Assuntos
Dente Pré-Molar/química , Cerâmica/química , Preparo da Cavidade Dentária/métodos , Falha de Restauração Dentária , Restauração Dentária Permanente/métodos , Análise de Variância , Força Compressiva , Análise do Estresse Dentário , Análise de Elementos Finitos , Humanos , Resistência ao Cisalhamento , Suporte de Carga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA