Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 237: 113560, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35468439

RESUMO

The aim of our study was to explore the developmental immunotoxicity (DIT) and its potential gender differences of perinatal exposure to 4-nonylphenol (4-NP), which was significant for the risk assessment of 4-NP exposure to fetuses and infants. Wistar pregnant rats were given the National Institution of Health (NIH)- 31 modified feed containing 0, 10, 100 and 500 mg/kg 4-NP from the gestation day (GD) 6 to the postnatal day (PND) 21. At PND21, the offspring rats were randomly selected to detect developmental immunotoxicity related indicators. Results suggested that high-dose 4-NP perinatal exposure caused growth retardation in infancy of male offspring rats, which was not obvious in female offspring rats. Also, 4-NP perinatal exposure induced DIT (mainly manifested as immunosuppression) with potential gender differences, including decreased weight of immune organs, suppressed immune function, decreased ratio of transforming growth factor (TGF)-ß/interleukin (IL)- 17A, increased ratio of T helper (Th) 17/regulatory T (Treg) cells et al. In addition, exploration of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway showed that JAK-STAT pathway mediated the leftward of Th17/Treg cells balance. Furthermore, the DIT to female offspring rats was more sensitive than to the males, which may be related to the differences of biological processes involved and needed to be further explored.


Assuntos
Fenômenos Biológicos , Janus Quinases , Animais , Feminino , Humanos , Janus Quinases/metabolismo , Masculino , Fenóis , Gravidez , Ratos , Ratos Wistar , Fatores de Transcrição STAT/metabolismo , Fatores Sexuais , Transdução de Sinais
2.
Artigo em Inglês | MEDLINE | ID: mdl-31511779

RESUMO

The combination of Alismatis Rhizoma (AR) and Rhizoma Smilacis Glabrae (RSG), as Chinese herb medicine, has been used for their uric acid-lowering effect. However, the effects and mechanism of the combination of the two medicines have not been fully reported. Therefore, to explore the effects of AR-RSG combination decoction on the treatment of chronic hyperuricemia (HUA) in rats as well as the underlying mechanisms, in this study, at the first stage, a long-term HUA rats model was established by gavage of oteracil potassium plus adenine; allopurinol was used as the positive control, and the uric acid-lowering effects of AR or RSG decoction alone with low and high dose were evaluated, respectively. Serum uric acid (UA) and xanthine oxidase (XOD) were determined mainly, and pathological analysis of the kidney and liver was carried out after sacrifice of the animals. And then, at the second stage, four dose groups of AR-RSG combination treatment were investigated in HUA rats. In addition to the indicators measured at the first stage, the expression of urate anion exchanger 1 (URAT1) in rat kidney was determined by immunohistochemistry. We discovered that the UA levels of the model group in both stages were significantly and steadily higher than those of control groups. AR and RSG alone or in combination possess ability to decrease serum UA level of HUA rats, with effects more marked in the combination groups. The uric acid-lowering mechanism of AR-RSG combination may be related to its inhibiting activity of XOD, improving kidney damage and downregulating the expression of URAT1 in kidney.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA