Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Am Chem Soc ; 146(36): 25035-25046, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213649

RESUMO

Graphene chemical vapor deposition (CVD) growth directly on target using substrates presents a significant route toward graphene applications. However, the substrates are usually catalytic-inert and special-shaped; thus, large-scale, high-uniformity, and high-quality graphene growth is challenging. Herein, graphene-skinned glass fiber fabric (GGFF) was developed through graphene CVD growth on glass fiber fabric, a Widely used engineering material. A fluid dynamics rectification strategy was first proposed to synergistically regulate the distribution of carbon species in 3D space and their collisions with hierarchical-structured substrates, through which highly uniform deposition of high-quality graphene on fibers in large-scale 3D-woven fabric was realized. This strategy is universal and applicable to CVD systems using various carbon precursors. GGFF exhibits high electrical conductivity and photothermal conversion capability, based on which a natural energy harvester was first developed. It can harvest both solar and raindrop energy through solar heating and droplet-based electricity generating, presenting promising potentials to alleviate energy burdens.

2.
Mol Cell Biochem ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276171

RESUMO

The increased global prevalence of metabolic dysfunction-associated steatohepatitis (MASLD) has been closely associated with chronic disorders of the circadian clock. Herein, we investigate the role of Clock, a core circadian gene, in the pathogenesis of MASLD. Wild-type (WT) and liver-specific Clock knockdown (Clock-KD) mice were fed a Western diet for 20 weeks to induce MASLD. A cellular MASLD model was established by treating AML12 cells with free fatty acids and the effects of Clock knockdown were examined following transfection with Clock siRNA. Increased lipid deposition and more severe steatohepatitis and fibrosis were observed in the livers of Western diet-fed but not normal chow diet-fed Clock-KD mice after 20 weeks compared to WT mice. Moreover, the Clock gene was found to be significantly downregulated in WT MASLD mice. The Clock gene was shown to regulate the expression of lipophagy-related proteins (LC3B, P62, RAB7, and PLIN2) in vivo and in vitro. Knockdown of Clock was found to inhibit lipophagy resulting in increased accumulation of lipid droplets in the mouse liver and AML12 cells. Interestingly, the CLOCK protein was shown to interact with P62. However, knockdown of the Clock gene did not promote transcription of the P62 gene but suppressed degradation of the P62 protein during lipophagy in AML12 cells. The hepatic Clock gene regulates lipophagy and affects lipid droplet deposition in liver cells, and thus plays a critical role in the development of MASLD induced by a Western diet.

3.
J Environ Manage ; 354: 120336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367502

RESUMO

In this work, a novel and efficient Fe-Ni LDH@ZIF-67 catalyst modified carbon cloth (CC) cathode was developed for tetracycline (TC) degradation in heterogeneous electro-Fenton (Hetero-EF) process. Compared to Fe-Ni LDH/CC (75.7%), TC degradation rate of Fe-Ni LDH@ZIF-67/CC cathode increased to 95.6% within 60 min. The synergistic effect of hetero-EF and anodic oxidation process accelerated electron transfer, the maximum H2O2 production of Fe-Ni LDH@ZIF-67/CC electrode reached 264 mg/L, improving utilization efficiency of H2O2. The cathode possessing a satisfied TC degradation performance over a wide pH (3-9). Free radical capture experiment revealed the collaboration of ·O2-, ·OH, and 1O2 play a significant role in TC degradation. The 5 cycles experiment and metal ion leaching experiment showed that the proposed Fe-Ni LDH@ZIF-67/CC has good recyclability and stability. In addition, the proposed Fe-Ni LDH@ZIF-67/CC cathode achieved satisfying performance in real water (tap water: 97.3%, lake water: 97.7%), demonstrating the possibility for practical application. TC degradation pathways were proposed by theory analysis and experimental results. The toxicity of TC intermediates was reduced by Hetero-EF degradation according to Toxicity Estimation Software Tool and Escherichia coli growth inhibition experiments. This work provides a novel modified cathode to improve removal efficiency of antibiotics in wastewater.


Assuntos
Carbono , Poluentes Químicos da Água , Carbono/química , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Antibacterianos/química , Tetraciclina , Oxirredução , Eletrodos , Água
4.
Pediatr Res ; 93(5): 1321-1327, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35194163

RESUMO

BACKGROUND: Neurodevelopmental abnormalities are prevalent in children with tetralogy of Fallot. Our aim was to investigate the structural brain alterations of preschool-aged children with tetralogy of Fallot and its correlation with neurodevelopmental outcome. METHODS: T1-weighted structural images were obtained from 25 children with tetralogy of Fallot who had undergone cardiopulmonary bypass surgery and from 24 normal controls. Cortical morphological indices including gray matter volume, cortical thickness, sulcal depth, gyrification, and cortical surface complexity were compared between the two groups. Neurodevelopmental assessments of the children with tetralogy of Fallot were performed with the Wechsler Preschool and Primary Scale of Intelligence. RESULTS: Cortical morphological differences between groups were distributed throughout the right caudal middle frontal gyrus, right fusiform gyrus, right lateral occipital gyrus, right precuneus, and left inferior parietal lobule. Among children with tetralogy of Fallot, altered cortical structures were correlated with the visual spatial index, working memory index, and perioperative variables. CONCLUSION: Our results suggested that abnormal cortical structure in preschool-aged children with tetralogy of Fallot may be the persistent consequence of delayed cortical development in fetuses and cortical morphology can be used as an early potential biomarker to capture regional brain abnormalities that are relevant to neurodevelopmental outcomes. IMPACT: Altered cortical structures in preschool-aged children with ToF were correlated with both neurodevelopmental outcomes and clinical risk factors. Cortical morphology can be used as an effective tool to evaluate neuroanatomical changes and detect underlying neural mechanisms in ToF patients. Abnormal cortical structure may be the continuous consequence of delayed fetal brain development in children with ToF.


Assuntos
Tetralogia de Fallot , Humanos , Criança , Pré-Escolar , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Fatores de Risco , Ponte Cardiopulmonar , Encéfalo/diagnóstico por imagem , Feto , Imageamento por Ressonância Magnética
5.
J Am Chem Soc ; 144(34): 15562-15568, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35980604

RESUMO

Graphene has been widely used as a solar absorber for its broad-band absorption. However, targeting a higher photothermal efficiency, the intrinsic infrared radiation loss of graphene requires to be further reduced. Herein, band structure engineering is performed to modulate graphene infrared radiation. Nitrogen-doped vertical graphene is grown on quartz foam (NVGQF) by the plasma-enhanced chemical vapor deposition method. Under the premise of keeping high solar absorption (250-2500 nm), graphitic nitrogen doping effectively modulates the infrared emissivity (2.5-25 µm) of NVGQF from 0.96 to 0.68, reducing the radiation loss by ∼31%. Based on the excellent photothermal properties of NVGQF, a temperature-gradient-driven crude oil collecting raft is designed, where the crude oil flows along the collecting path driven by the viscosity gradient without any external electric energy input. Compared with a nondoped vertical graphene quartz foam raft, the NVGQF raft with a superior photothermal efficiency shows a significantly enhanced crude oil collecting efficiency by three times. The advances in this work suggest broad radiation-managed application platforms for graphene materials, such as seawater desalination and personal or building thermal management.

6.
Sheng Li Xue Bao ; 74(5): 726-736, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36319096

RESUMO

The central circadian clock and feeding rhythm coordinately reset peripheral circadian clocks. Emerging evidence suggests that feeding rhythm resets peripheral circadian clocks in a tissue-specific manner. This study aimed to determine whether and how feeding rhythm regulates circadian rhythms of the circadian clock and metabolic genes in brown adipose tissue (BAT). We applied different regimens of time-restricted feeding (TRF) in wildtype and Per1/2 deficient C57BL/6 mice, and quantified the effects of sex, treatment duration, constant light, and circadian clock on circadian rhythms of the BAT circadian clock and metabolic genes by RT-qPCR; Representative circadian clock genes are Bmal1, Nr1d1, Dbp, and Per2, and representative metabolic genes are uncoupling protein 1 (Ucp1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3) that controls the flux through glycolysis, pyruvate dehydrogenase kinase isozyme 4 (Pdk4) gating the tricarboxylic acid cycle, and carnitine palmitoyltransferase 1A (Cpt1a) that controls mitochondrial fatty acid oxidation. The results showed that, daytime-restricted feeding (DRF) moderately shifted the phase of the BAT circadian clock in female mice within 7 or 36 d, and resulted in the loss of circadian rhythm in Dbp and Per2 transcripts in males. DRF induced de novo oscillation of the Ucp1 transcript, and shifted the phase of representative metabolic genes, such as Pfkfb3, Pdk4, and Cpt1a, more than 7 h. Constant light is known to disrupt the synchrony of the central circadian clock. The results showed that constant light promoted phase entrainment of the circadian clock by DRF in BAT, but abolished the oscillation of the metabolic genes (except for Pdk4). Despite combined treatment with Per1/2 deficiency and constant darkness, DRF was sufficient to drive circadian rhythms of Bmal1 and Dbp, but not those of Nr1d1, Ucp1, Pfkfb3, and Cpt1a. Overall, the circadian clock of BAT has weak adaptation to altered feeding rhythms and sex differences. The central circadian clock antagonizes DRF in the entrainment of the BAT circadian clock, whereas DRF resets circadian rhythms of metabolic genes, such as Ucp1, Pfkfb3, and Cpt1a, in a circadian clock-dependent manner.


Assuntos
Relógios Circadianos , Feminino , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Tecido Adiposo Marrom , Fatores de Transcrição ARNTL , Ritmo Circadiano
7.
Mol Cell Biochem ; 467(1-2): 65-75, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32067140

RESUMO

Circadian rhythms help organisms adapt to changes of external environment by regulating energy metabolism and remaining the balance of homeostasis. Numerous researches have proved that the physiological function of liver was precisely controlled by circadian rhythms. Clock, one of core circadian genes, has been demonstrated to regulate the oxidative phosphorylation process of mitochondrial, which provides energy for living cells and acts as one of the hub for apoptosis. However, whether Clock gene regulates mitochondrial apoptosis pathways in liver cells remains less explored. In the present study, we used lentiviral vector to establish a stable AML12 cell lines which were capable of expressing specific shRNA to interfere the expression of Clock gene and investigated the effect of Clock on mitochondrial apoptosis pathways. Herein, we found that the interference of Clock gene could significantly suppress mitochondrial apoptosis pathways by stabilizing mitochondrial membrane potential and inhibiting mitochondria out membrane permeablization, which might be a result of lower expression of BAD and BIM proteins. Moreover, the interference of Clock gene could downregulate the expression of mitochondrial apoptosis factors, i.e. AIF, CYCS, APAF-1 and SMAC, which will suppress the formation of apoptosome and the process of DNA degradation to further inhibit apoptosis process. This work provides an insight on the important role of Clock gene participating in mitochondrial apoptosis pathways of hepatocytes and unveils a probable pathogenesis of how circadian rhythm regulates liver diseases.


Assuntos
Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Hepatócitos/citologia , Mitocôndrias/metabolismo , Animais , Apoptose , Linhagem Celular , Permeabilidade da Membrana Celular , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Hepatócitos/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Membranas Mitocondriais/metabolismo
8.
Biochem Biophys Res Commun ; 517(1): 111-117, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31303273

RESUMO

Doxorubicin (DOX) is a potent anti-neoplastic agent with cumulative cardiotoxicity. DOX-induced cardiotoxicity has been shown to depend on the different dosing times. However, the basis for determining the dosing time to minimize DOX-induced cardiotoxicity and the underlying mechanisms remain incompletely understood. Here we first showed that SIRT3, the major mitochondrial deacetylase, is negatively correlated to DOX-induced cardiotoxicity through the regulation of ATP production, mitochondrial membrane potential (MMP) level and ROS level in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Then, we used in vivo experiments to demonstrate that DOX significantly reduced the SIRT3 expression and the SIRT3 activity as reflected by the increased AcK68MnSOD/MnSOD ratio in rats after six weeks of treatment. Notably, the activity of SIRT3 had an obvious diurnal rhythm pattern in the myocardium of healthy rats. More importantly, an obvious lower AcK68MnSOD/MnSOD ratio was observed in rat hearts with DOX administrated at Zeitgeber time (ZT) 9 (ZT 0 was the time lights were turned on) than ZT1, which represent the peak and trough of SIRT3 activity. Moreover, DOX ZT9 reduced the body weight loss, extended the survival period, improved the heart function and alleviated the myocardial lesions compared to DOX ZT1. Mechanistic investigations demonstrated that DOX ZT1 significantly reduced ATP production, oxygen consumption rate (OCR) at various respiration states, MMP level and MnSOD activity and enhanced the H2O2 level compared with CON ZT1, whereas there was no significant effect for DOX ZT9 compared with CON ZT9. Taken together, dosing at the peak time of SIRT3 activity reduced DOX-induced cardiotoxicity, which may be related to the increased endogenous tolerance against the mitochondrial dysfunction and oxidative stress caused by DOX.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 3/metabolismo , Animais , Antibióticos Antineoplásicos/administração & dosagem , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/patologia , Linhagem Celular , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos Sprague-Dawley
9.
Cell Physiol Biochem ; 37(3): 911-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26390085

RESUMO

BACKGROUND/AIMS: Circadian locomotor output cycles protein kaput (CLOCK) plays a key role in maintaining circadian rhythms and activation of downstream elements. However, its function on human female reproductive system remains unknown. METHODS: To investigate the potential role of CLOCK, CLOCK-shRNAs were transfected into mouse 129 ES cells or injected into the ovaries of adult female mice. Western blotting was utilized to analyze the protein interactions and flow cytometry was used to assess apoptosis. RESULTS: The expression of CLOCK peaked at the 6th week in the healthy fetuses. However, an abnormal expression of CLOCK was detected in fetuses from spontaneous miscarriage. To determine the effect of CLOCK on female fertility, a small hairpin RNA (shRNA) strategy was used to specifically knockdown the CLOCK gene expression in vitro and in vivo. Knockdown of CLOCK induced apoptosis in mouse embryonic stem (mES) cells and inhibited the proliferation in mES cells in vitro. CLOCK knockdown also led to decreased release of oocytes and smaller litter size compared with control in vivo. CONCLUSIONS: Collectively, theses findings indicate that CLOCK plays an important role in fertility and that the CLOCK knockdown leads to reduction in reproduction and increased miscarriage risk.


Assuntos
Aborto Espontâneo/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ciclo Menstrual , Aborto Espontâneo/etiologia , Aborto Espontâneo/genética , Aborto Animal/metabolismo , Animais , Apoptose , Proliferação de Células , Relógios Circadianos , Feminino , Fertilidade , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos da Linhagem 129 , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Ovário/metabolismo , RNA Interferente Pequeno/metabolismo
10.
Acta Biochim Biophys Sin (Shanghai) ; 46(4): 313-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24578160

RESUMO

Several essential biological progresses in mammals are regulated by circadian rhythms. Though the molecular mechanisms of oscillating these circadian rhythms have been uncovered, the specific functions of the circadian genes are not very clear. It has been reported that knocking down circadian genes by microRNA is a useful strategy to explore the function of the circadian rhythms. In this study, through a forward bioinformatics screening approach, we identified miR-29a/b/c as potent inhibitors for the human circadian gene hPER1. We further found that miR-29a/b/c could directly target hPER1 3'untranslated region (UTR) and down-regulate hPER1 at both mRNA and protein expression levels in human A549 cells. Thus, our findings suggested that the expression of hPER1 is regulated by miR-29a/b/c, which may also provide a new clue for the function of hPER1.


Assuntos
Regiões 3' não Traduzidas , MicroRNAs/fisiologia , Proteínas Circadianas Period/genética , Algoritmos , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Primers do DNA , Regulação para Baixo , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Food Chem ; 445: 138802, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401314

RESUMO

Bisphenols (BPs) can migrate from packaging materials into foods, resulting in potentially harmful residues. For example, accumulation of BPs is associated with endocrine disorders. Owing to matrix effects, development of an effective and eco-friendly sample pretreatment would be helpful for BPs detection in beverages packed in plastic containers. In this work, an extraction bar, composed of hollow fiber (HF) functionalized with covalent organic frameworks (COF@Tp-NDA) and 1-ocanol, was prepared for extraction of five BPs simultaneously. The synergistic effect of COF@Tp-NDA and 1-octanol improved the extraction efficiency of BPs from milk-based beverage, juice, and tea beverage. Under optimal conditions, limits of detection ranged from 0.10 to 2.00 ng mL-1 (R2 ≥ 0.9974) and recoveries ranged from 70.1 % to 106.8 %. This method has the potential to enrich BPs, supporting their accurate determination in complex beverages.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Bebidas/análise , 1-Octanol , Alimentos , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão
12.
World J Pediatr ; 20(2): 173-184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37737505

RESUMO

BACKGROUND: Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease. Children with TOF would be confronted with neurological impairment across their lifetime. Our study aimed to identify the risk factors for cerebral morphology changes and cognition in postoperative preschool-aged children with TOF. METHODS: We used mass spectrometry (MS) technology to assess the levels of serum metabolites, Wechsler preschool and primary scale of intelligence-Fourth edition (WPPSI-IV) index scores to evaluate neurodevelopmental levels and multimodal magnetic resonance imaging (MRI) to detect cortical morphological changes. RESULTS: Multiple linear regression showed that preoperative levels of serum cortisone were positively correlated with the gyrification index of the left inferior parietal gyrus in children with TOF and negatively related to their lower visual spaces index and nonverbal index. Meanwhile, preoperative SpO2 was negatively correlated with levels of serum cortisone after adjusting for all covariates. Furthermore, after intervening levels of cortisone in chronic hypoxic model mice, total brain volumes were reduced at both postnatal (P) 11.5 and P30 days. CONCLUSIONS: Our results suggest that preoperative serum cortisone levels could be used as a biomarker of neurodevelopmental impairment in children with TOF. Our study findings emphasized that preoperative levels of cortisone could influence cerebral development and cognition abilities in children with TOF.


Assuntos
Cortisona , Cardiopatias Congênitas , Tetralogia de Fallot , Criança , Humanos , Pré-Escolar , Animais , Camundongos , Tetralogia de Fallot/cirurgia , Cardiopatias Congênitas/cirurgia , Fatores de Risco , Cognição
13.
Nat Commun ; 15(1): 5040, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866786

RESUMO

Direct chemical vapor deposition (CVD) growth of graphene on dielectric/insulating materials is a promising strategy for subsequent transfer-free applications of graphene. However, graphene growth on noncatalytic substrates is faced with thorny issues, especially the limited growth rate, which severely hinders mass production and practical applications. Herein, graphene glass fiber fabric (GGFF) is developed by graphene CVD growth on glass fiber fabric. Dichloromethane is applied as a carbon precursor to accelerate graphene growth, which has a low decomposition energy barrier, and more importantly, the produced high-electronegativity Cl radical can enhance adsorption of active carbon species by Cl-CH2 coadsorption and facilitate H detachment from graphene edges. Consequently, the growth rate is increased by ~3 orders of magnitude and carbon utilization by ~960-fold, compared with conventional methane precursor. The advantageous hierarchical conductive configuration of lightweight, flexible GGFF makes it an ultrasensitive pressure sensor for human motion and physiological monitoring, such as pulse and vocal signals.

14.
Adv Mater ; 36(24): e2313752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38576272

RESUMO

Conventional conductive materials such as metals are crucial functional components of conductive systems in diverse electronic instruments. However, their severe intrinsic impedance mismatch with air dielectric causes strong reflection of incident electromagnetic waves, and the resulting low electromagnetic transmissivity typically interferes with surrounding electromagnetic signal communications in modern multifunction-integrated instruments. Herein, graphene glass fiber fabric (GGFF) that merges intrinsic electrical and electromagnetic properties of graphene with dielectric attributes and highly porous macrostructure of glass fiber fabric (GFF) is innovatively developed. Using a novel decoupling chemical vapor deposition growth strategy, high-quality and layer-limited graphene is prepared on noncatalytic nonmetallic GFF in a controlled manner; this is pivotal to realizing GGFF with the desired compatibility among high conductivity, low electromagnetic reflectivity, and high electromagnetic transmissivity. At the same sheet resistance over a wide range of values (250-3000 Ω·sq-1), the GGFF exhibits significantly lower electromagnetic reflectivity (by 0.42-0.51) and higher transmissivity (by 0.27-0.62) than those of its metal-based conductive counterpart (CuGFF). The material design strategy reported herein provides a constructive solution to eliminate the incompatibility between electrical conductivity and electromagnetic transmissivity faced by conventional conductive materials, spotlighting the applicability of GGFF in electric heating scenarios in radar, antenna, and stealth systems.

15.
Sci Bull (Beijing) ; 69(17): 2712-2722, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39060214

RESUMO

Direct synthesis of graphene on nonmetallic substrates via chemical vapor deposition (CVD) has become a frontier research realm targeting transfer-free applications of CVD graphene. However, the stable mass production of graphene with a favorable growth rate and quality remains a grand challenge. Herein, graphene glass fiber fabric (GGFF) was successfully developed through the controllable growth of graphene on non-catalytic glass fiber fabric, employing a synergistic binary-precursor CVD strategy to alleviate the dilemma between growth rate and quality. The binary precursors consisted of acetylene and acetone, where acetylene with high decomposition efficiency fed rapid graphene growth while oxygen-containing acetone was adopted for improving the layer uniformity and quality. Notably, the bifurcating introducing-confluent premixing (BI-CP) system was self-built for the controllable introduction of gas and liquid precursors, enabling the stable production of GGFF. GGFF features solar absorption and infrared emission properties, based on which the self-adaptive dual-mode thermal management film was developed. This film can automatically switch between heating and cooling modes by spontaneously perceiving the temperature, achieving excellent thermal management performances with heating and cooling power of ∼501.2 and ∼108.6 W m-2, respectively. These findings unlock a new strategy for the large-scale batch production of graphene materials and inspire advanced possibilities for further applications.

16.
Nat Commun ; 15(1): 6825, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122739

RESUMO

Graphene growth on widely used dielectrics/insulators via chemical vapor deposition (CVD) is a strategy toward transfer-free applications of CVD graphene for the realization of advanced composite materials. Here, we develop graphene-skinned alumina fibers/fabrics (GAFs/GAFFs) through graphene CVD growth on commercial alumina fibers/fabrics (AFs/AFFs). We reveal a vapor-surface-solid growth model on a non-metallic substrate, which is distinct from the well-established vapor-solid model on conventional non-catalytic non-metallic substrates, but bears a closer resemblance to that observed on catalytic metallic substrates. The metalloid-catalytic growth of graphene on AFs/AFFs resulted in reduced growth temperature (~200 °C lower) and accelerated growth rate (~3.4 times faster) compared to that obtained on a representative non-metallic counterpart, quartz fiber. The fabricated GAFF features a wide-range tunable electrical conductivity (1-15000 Ω sq-1), high tensile strength (>1.5 GPa), lightweight, flexibility, and a hierarchical macrostructure. These attributes are inherited from both graphene and AFF, making GAFF promising for various applications including electrical heating and electromagnetic interference shielding. Beyond laboratory level preparation, the stable mass production of large-scale GAFF has been achieved through a home-made roll-to-roll system with capacity of 468-93600 m2/year depending on product specifications, providing foundations for the subsequent industrialization of this material, enabling its widespread adoption in various industries.

17.
ACS Omega ; 8(1): 934-945, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643527

RESUMO

Rate of penetration (ROP) is an essential factor in drilling optimization and reducing the drilling cycle. Most of the traditional ROP prediction methods are based on building physical model and single intelligent algorithms, and the efficiency and accuracy of these prediction methods are very low. With the development of artificial intelligence, high-performance algorithms make reliable prediction possible from the data perspective. To improve ROP prediction efficiency and accuracy, this paper presents a method based on particle swarm algorithm for optimization of long short-term memory (LSTM) neural networks. In this paper, we consider the Tuha Shengbei block oilfield as an example. First, the Pearson correlation coefficient is used to measure the correlation between the characteristics and eight parameters are screened out, namely, the depth of the well, gamma, formation density, pore pressure, well diameter, drilling time, displacement, and drilling fluid density. Second, the PSO algorithm is employed to optimize the super-parameters in the construction of the LSTM model to the predict ROP. Third, we assessed model performance using the determination coefficient (R 2), root mean square error (RMSE), and mean absolute percentage error (MAPE). The evaluation results show that the optimized LSTM model achieves an R 2 of 0.978 and RMSE and MAPE are 0.287 and 12.862, respectively, hence overperforming the existing methods. The average accuracy of the optimized LSTM model is also improved by 44.2%, indicating that the prediction accuracy of the optimized model is higher. This proposed method can help to drill engineers and decision makers to better plan the drilling operation scheme and reduce the drilling cycle.

18.
Heliyon ; 9(4): e15073, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37151712

RESUMO

A multi-wavelength bandstop filter is proposed and numerically demonstrated using the sum-frequency generation (SFG) process in a waveguide of periodically poled lithium niobate (PPLN). This proposed device achieves channels number reconfigurable, central filtering wavelength of each filtering channel independently tunable and extinction ratios (ERs) equalized via all-optical methods.

19.
Transl Androl Urol ; 12(12): 1785-1802, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38196694

RESUMO

Background: The testicular sperm instead of ejaculated sperm for intracytoplasmic sperm injection (ICSI) in infertile men with high sperm DNA fragmentation (SDF) is a controversial topic. This updated systematic review and meta-analysis aims to evaluate whether couples with high level of SDF will benefit more from intracytoplasmic sperm injection with testicular sperm (Testi-ICSI) as compared to intracytoplasmic sperm injection with ejaculated sperm (Ejac-ICSI). Methods: A systematic search was conducted according to PRISMA guidelines, using PubMed, Embase, Web of Science and the Cochrane Central Register of Controlled Trials (CENTRAL), encompassing studies from the earliest record until May 2022. We included studies analyzing comparative pregnancy outcomes of testicular versus ejaculated sperm for ICSI in infertile men with high DNA fragmentation. The risks of bias and certainty of evidence were assessed using the Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework, respectively. Results: Eleven studies were included. Meta-analysis showed that SDF levels revealed a significant difference association [odds ratio (OR) =-25.81; 95% confidence interval (CI): -34.82, -16.81; I2=94%; P<0.00001] between testicular and ejaculated sperm. Compared with Ejac-ICSI, a non-significant tendency was observed for fertilization rates (FRs) in the Testi-ICSI group (OR =0.87; 95% CI: 0.67, 1.12; I2=81%; P=0.28). However, there was significant difference pointing to better outcomes for Testi-ICSI in clinical pregnancy rates (CPRs) (OR =2.36; 95% CI: 1.71, 3.24; I2=0%; P<0.00001), live birth rates (LBRs) (OR =3.10; 95% CI: 2.13, 4.51; I2=4%; P<0.00001) and miscarriage rates (MRs) (OR =0.28; 95% CI: 0.13, 0.60; I2=0%; P=0.001). Conclusions: Results of this updated meta-analysis reveal that SDF rates are lower in testicular sperm than in ejaculated sperm and that Testi-ICSI is correlated with better clinical outcomes, including higher CPRs, higher LBRs, and lower MRs in infertile males with high SDF levels. Nevertheless, with the overall low to moderate quality of the studies, further well-designed controlled studies are required.

20.
Adv Mater ; 35(18): e2209897, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36720106

RESUMO

Solar heating and radiative cooling techniques have been proposed for passive space thermal management to reduce the global energy burden. However, the currently used single-function envelope/coating materials can only achieve static temperature regulation, presenting limited energy savings and poor adaption to dynamic environments. In this study, a sandwich-structured fabric, composed of vertical graphene, graphene glass fiber fabric, and polyacrylonitrile nanofibers is developed, with heating and cooling functions integrated through multiband, synergistic, (solar spectrum and mid-infrared ranges) and asymmetric optical modulations on two sides of the fabric. The dual-function fabric demonstrates high adaption to the dynamic environment and superior performance in a zero-energy-input temperature regulation. Furthermore, it demonstrates ≈15.5 and ≈31.1 MJ m-2 y-1 higher annual energy savings compared to those of their cooling-only and heating-only counterparts, corresponding to ≈173.7 MT reduction in the global CO2 emission. The fabric exhibits high scalability for batch manufacturing with commercially abundant raw materials and facile technologies, providing a favorable guarantee of its mass production and use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA