Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxics ; 11(8)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37624185

RESUMO

In recent years, there have been efforts to utilize surface water as a power source, material, and food. However, these efforts are impeded due to the vast amounts of contaminants and emerging contaminants introduced by anthropogenic activities. Herbicides such as Glyphosate and Glufosinate are commonly known to contaminate surface water through agricultural industries. In contrast, some emerging contaminants, such as rare earth elements, have started to enter the surface water from the production and waste of electronic products. Duckweeds are angiosperms from the Lemnaceae family and have been used for toxicity tests in aquatic environments, mainly those from the genus Lemna, and have been approved by OECD. In this study, we used duckweed from the genus Wolffia, which is smaller and considered a good indicator of metal pollutants in the aquatic environment. The growth rate of duckweed is the most common endpoint in observing pollutant toxicity. In order to observe and mark the fronds automatically, we used StarDist, a machine learning-based tool. StarDist is available as a plugin in ImageJ, simplifying and assisting the counting process. Python also helps arrange, manage, and calculate the inhibition percentage after duckweeds are exposed to contaminants. The toxicity test results showed Dysprosium to be the most toxic, with an IC50 value of 14.6 ppm, and Samarium as the least toxic, with an IC50 value of 279.4 ppm. In summary, we can provide a workflow for automatic frond counting using StarDist integrated with ImageJ and Python to simplify the detection, counting, data management, and calculation process.

2.
Aquat Toxicol ; 144-145: 265-74, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24200992

RESUMO

The calcium-mediated proline accumulation is a critical response under NaCl stress and the function of the induced proline as a glutamine synthetase (GS) protectant in greater duckweed was investigated. The plants were treated with solutions containing 100mM NaCl, 200 mM NaCl, 200 mM NaCl plus 10mM CaCl2, or 10mM CaCl2 alone for 4 days. At the end of the experiment, the fronds of inoculum treated with 200 mM NaCl showed the chlorotic effect, higher glutamate dehydrogenase (NADH-GDH) activity and lower GS activity. At the lower salinity, the activities of GS and NADH-GDH were not altered markedly. A significant accumulation of proline was not found under either low or high salinity. The activity of Δ(1)-pyrroline-5-carboxylate reductase (P5CR) was enhanced only at 200 mM NaCl but remained unchanged at 100mM NaCl. The activity of Δ(1)-pyrroline-5-carboxylate synthetase (P5CS) did not change under salinity-stressed. Addition of CaCl2 to the salt stressed plants not only lowered NaCl injury but also showed an elevated level of proline contents in response to the salinity treatment. In addition, both GS activity and corresponding polypeptides were expressed close to the level of control. Exogenous proline protects GS2 and the 32 kDa protein in photosystem II reaction center (D1) from H2O2-induced redox degradation in the chloroplast lysates of duckweed. The results suggest that calcium-induced proline accumulation may play an important role as a GS protectant under NaCl exposure in S. polyrhiza.


Assuntos
Araceae/efeitos dos fármacos , Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Prolina/metabolismo , Cloreto de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade , Araceae/enzimologia , Araceae/genética , Araceae/metabolismo , Glutamato-Amônia Ligase/metabolismo , Estresse Fisiológico/efeitos dos fármacos
3.
Aquat Toxicol ; 144-145: 124-32, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24177215

RESUMO

This study was carried out to assess the influence of diethyl phthalate (DEP) alone or associated with calcium chloride (CaCl2) on greater duckweed plants, emphasizing the implications of calcium in amelioration of DEP-induced stress on plant growth. Greater duckweed were treated with DEP in variable concentrations, as 0, 0.25, 0.5, 1.0 and 2.0mM for 7 days, or treated with the same concentration either 2mM DEP or 2mM DEP plus 10mM CaCl2·2H2O in different duration 0-7 days. Treatment with 2mM DEP resulted in increasing proline content, protease activity, and ammonia accumulation in duckweed tissues. NADH-glutamate dehydrogenase (NADH-GDH; EC 1.4.1.2) and Δ(1)-pyrroline-5-carboxylate reductase (P5CR; EC 1.5.1.2), two key enzymes in the glutamate pathway of proline synthesis, showed increase in activity with DEP treatment and positively correlated with proline accumulation. No further increase in proline accumulation was observed with addition of calcium chloride to the DEP-treated cultures. However, supplementation of Ca(2+) can mitigate the adverse effect of DEP, at least in part to decrease the DEP-induced superoxide accumulation and increase in GDH activity for ammonia assimilation in duckweed fronds. In addition, effects of calcium on mitigation of DEP injury were also observed in glutamine synthetase (GS; EC 6.3.1.2) expression. Both GS1 and GS2 polypeptide accumulation and the level of total GS activity were nearly equivalent to the control. Exogenous proline protects GS2 from DEP-modulated redox damage in the chloroplast lysates but there is no remarkable protection effects on D1 (the 32kDa protein in photosystem II reaction center) degradation. In conclusion, the glutamate pathway of proline synthesis might be involved in mitigation of DEP-induced injury, and calcium plays an important role in increasing GDH, P5CR, and GS expression.


Assuntos
Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamato-Amônia Ligase/genética , Ácidos Ftálicos/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Araceae/efeitos dos fármacos , Araceae/enzimologia , Araceae/genética , Glutamato-Amônia Ligase/metabolismo , Prolina/metabolismo
4.
Aquat Toxicol ; 124-125: 171-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22975440

RESUMO

The toxic effects of diethyl phthalate (DEP), a potent allelochemical, on the enzyme activity and polypeptide accumulation of glutamine synthetase (GS) in greater duckweed were investigated. In our previous studies, DEP induced oxidative responses at concentrations from 0.5 to 2 mM in greater duckweed and the antioxidant enzymes played important roles in the defense strategy against DEP stress. In this study, DAB-H(2)O(2) and NBT stain for superoxide radicals (O(2)(·-)), lipid peroxidation, HSP70, and ammonia accumulation in DEP-treated duckweed tissues revealed adverse effect of DEP in plant growth. Biochemical analysis and physiological methods were combined to investigate GS activity and polypeptide accumulation under DEP-induced stress. The results showed that GS activity was reduced with the increasing concentration of DEP, indicative of enhanced toxic effect. Immunoblot analysis with chloroplast soluble fractions indicated that the chloroplastic GS (GS2) polypeptide from greater duckweed was degraded under DEP stress conditions. The response of GS2 to the DEP stress may be modulated by means of redox change in plant tissues, chloroplasts, and chloroplast lysates. The results suggest that DEP is toxic to the greater duckweed by inhibition of the GS isoenzymes in nitrogen assimilation and the GS2 plays important roles in the adaptation strategy against DEP toxicity.


Assuntos
Araceae/efeitos dos fármacos , Glutamato-Amônia Ligase/metabolismo , Ácidos Ftálicos/toxicidade , Poluentes Químicos da Água/toxicidade , Araceae/enzimologia , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peptídeos/metabolismo , Estresse Fisiológico/efeitos dos fármacos
5.
Aquat Toxicol ; 109: 166-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22030411

RESUMO

The toxicity and effects of diethyl phthalate (DEP), a potent allelochemical, on the growth of greater duckweed were studied. Biochemical analyses and physiological methods were combined to investigate oxidative stress, adverse effects and their mechanisms in greater duckweeds grown in 0-2 mM of diethyl phthalate (DEP) after cultivation for 7 days. The results showed that J-shaped concentration response curves were displayed in hydrogen peroxide (H2O2), ascorbic acid (ASA) and dehydroascorbate (DHA) levels, and ascorbate peroxidase (APX) and gualacol peroxidase (POD) activities, indicating reduced oxidative stress and toxic effect. The inverted U-shaped curves were exhibited in relative growth rate (RGR), fresh weight/dry weight (FW/DW) ratio, total chlorophyll content, total soluble thiols, and glutathione reductase (GR) activity, revealing beneficial effect in plant growth. The inverted U-shaped curves were also found in malondialdehyde (MAD) and superoxide radical (O2-) contents with the increasing concentration of DEP, indicative of enhanced oxidative stress. The results suggest that DEP is toxic to the greater duckweed by inducing oxidative stress and antioxidative enzymes may play important roles in the defense strategy against DEP toxicity.


Assuntos
Araceae/efeitos dos fármacos , Ácidos Ftálicos/toxicidade , Poluentes Químicos da Água/toxicidade , Araceae/enzimologia , Araceae/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Pigmentos Biológicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA