Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(39): 91262-91275, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37474861

RESUMO

Various materials have been developed to capture volatile organic compounds (VOCs) to mitigate air pollution. However, sorbent materials with excellent resistance to water are rare. Here, several Fe/N-doped activated carbons (ACs) have been prepared to capture VOCs in humid environments. The ACs were analyzed by various characterization techniques, such as BET, SEM, XPS, XRD, FTIR, and Raman. The results showed that Fe/N doping resulted in the specific surface area of the ACs increasing by 500 to 1000 m2 g-1, the average pore size increasing to approximately 2 nm, improved mesoporous structure, higher graphitization, lower hydrophilicity, and polarity. The VOCs adsorption performance of the ACs was evaluated by static and dynamic adsorption experiments. The uptake of toluene and ethyl acetate by ACs was enhanced to 224 mg g-1 and 135 mg g-1, respectively. And ACs were able to maintain 70 to 80% VOCs adsorption capacity for VOCs at 80% relative humidity. Furthermore, the microscopic mechanisms were investigated by the grand canonical Monte Carlo method (GCMC). The highly graphitized structure and the N functional groups favored the VOC adsorption process and discouraged the adsorption of water vapor. This work affirmed the dominance of Fe/N-doped carbon, which will contribute to the evolution of water-resistant VOCs adsorbent materials.


Assuntos
Pistacia , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Vapor , Carvão Vegetal/química , Adsorção
2.
Environ Pollut ; 295: 118714, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942291

RESUMO

The objective of this work was to evaluate the adsorption capacity of alkylated modified porous biochar prepared by esterification and etherification (PSAC-2) for low concentrate volatile organic compounds (VOCs, toluene and ethyl acetate) in high humidity environment by experiments and theoretical calculations. Results showed that PSAC-2 has a large specific surface area and weak surface polarity, at 80% relative humidity, its capacities for toluene and ethyl acetate adsorption could be maintained at 92% and 87% of the initial capacities (169.9 mg/g and 96.77 mg/g). The adsorption behaviors of toluene, ethyl acetate, and water vapor were studied by adsorption isotherms, and isosteric heat was obtained. The desorption activation energy was obtained by temperature programmed desorption experiment. The outcomes manifested that the PSAC-2 can achieve strong adsorption performance for weakly polar molecules. Through density functional theory (DFT) simulations, owing to the interaction of hydrogen bonds, oxygen-containing groups became a significant factor influencing the adsorption of VOCs in humid environments. These results could provide an important reference for VOCs control in a high humidity environment.


Assuntos
Pistacia , Compostos Orgânicos Voláteis , Adsorção , Alquilação , Carvão Vegetal , Umidade
3.
Environ Sci Pollut Res Int ; 29(56): 85257-85270, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35793021

RESUMO

To elucidate the effect of nitrogen functional groups on the competitive adsorption of toluene and water vapor, a series of N-doped resorcinol-formaldehyde resin-based activated carbons using g-C3N4 as the nitrogen source were prepared, which possessed different N contents (1.29-6.14%). The competitive adsorption characteristics and mechanisms were investigated by characterizations, dynamic adsorption experiments, adsorption isotherms, and density functional theory calculations. Results showed that the normalized toluene adsorption capacity under 50 RH% was consistent with the N content, revealing that nitrogen functional groups can enhance the competitive adsorption for toluene under a humid atmosphere. Adsorption isotherms analysis suggested that nitrogen functional groups can not only accelerate the adsorption of toluene but also improve the hydrophobicity of carbon surface. Competitive adsorption mechanisms were ascribed to π-π interactions and electrostatic interactions. Specifically, graphitic-N and pyridinic-N enhance competitive adsorption for toluene through reinforced π-π interactions with toluene and weakened electrostatic interactions with water molecule. However, pyrrolic-N improve the competitive adsorption, which is principally attributed to enhanced π-π interactions with toluene. Furthermore, it was found that the reusability of activated carbon could be improved by nitrogen functional groups. This study provides theoretical hints to develop volatile organic compound adsorbents in the presence of water vapor.

4.
Environ Sci Pollut Res Int ; 28(46): 65216-65228, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34228305

RESUMO

The control of low-concentration VOCs in coal-fired flue gas is one of the research hotspots at present. In this work, K2CO3 and K2CO3-KCl were employed to activate the agricultural wastes (pistachio nut shell) to prepare activated carbon (AC), named PSAC-1 and PSAC-2, respectively. By testing the adsorption performance of the prepared AC and commercial activated carbon (CAC) for the five target VOCs, it was observed that the adsorption capacity of PSAC-2 was the best compared to the other two. Particularly, the adsorption capacity of PSAC-2 (225 mg·g-1) for phenol was 3.8 times that of CAC (59 mg·g-1). In addition, the pseudo-first-order model, pseudo-second-order model, and Elovich model all fitted the adsorption process well, which indicated that both physical adsorption and chemical adsorption existed simultaneously, in which physical adsorption played a dominant role and chemical adsorption played a minor role. Weber-Morris kinetic model was used to illustrate the rate-controlling mechanism; the results confirmed that the stage of external membrane mass transfer was the control stage of adsorption rate. The results of this study can provide some references for the commercial production of biomass-derived AC and the removal of VOCs in coal-fired flue gas.


Assuntos
Carvão Vegetal , Pistacia , Adsorção , Cinética , Nozes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA