RESUMO
How metazoan mechanotransduction channels sense mechanical stimuli is not well understood. The NOMPC channel in the transient receptor potential (TRP) family, a mechanotransduction channel for Drosophila touch sensation and hearing, contains 29 Ankyrin repeats (ARs) that associate with microtubules. These ARs have been postulated to act as a tether that conveys force to the channel. Here, we report that these N-terminal ARs form a cytoplasmic domain essential for NOMPC mechanogating in vitro, mechanosensitivity of touch receptor neurons in vivo, and touch-induced behaviors of Drosophila larvae. Duplicating the ARs elongates the filaments that tether NOMPC to microtubules in mechanosensory neurons. Moreover, microtubule association is required for NOMPC mechanogating. Importantly, transferring the NOMPC ARs to mechanoinsensitive voltage-gated potassium channels confers mechanosensitivity to the chimeric channels. These experiments strongly support a tether mechanism of mechanogating for the NOMPC channel, providing insights into the basis of mechanosensitivity of mechanotransduction channels.
Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mecanotransdução Celular , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Canal de Potássio Kv1.2/metabolismo , Larva/citologia , Larva/metabolismo , Microtúbulos/metabolismo , Estrutura Terciária de Proteína , TatoRESUMO
Collapse of membrane lipid asymmetry is a hallmark of blood coagulation. TMEM16F of the TMEM16 family that includes TMEM16A/B Ca(2+)-activated Cl(-) channels (CaCCs) is linked to Scott syndrome with deficient Ca(2+)-dependent lipid scrambling. We generated TMEM16F knockout mice that exhibit bleeding defects and protection in an arterial thrombosis model associated with platelet deficiency in Ca(2+)-dependent phosphatidylserine exposure and procoagulant activity and lack a Ca(2+)-activated cation current in the platelet precursor megakaryocytes. Heterologous expression of TMEM16F generates a small-conductance Ca(2+)-activated nonselective cation (SCAN) current with subpicosiemens single-channel conductance rather than a CaCC. TMEM16F-SCAN channels permeate both monovalent and divalent cations, including Ca(2+), and exhibit synergistic gating by Ca(2+) and voltage. We further pinpointed a residue in the putative pore region important for the cation versus anion selectivity of TMEM16F-SCAN and TMEM16A-CaCC channels. This study thus identifies a Ca(2+)-activated channel permeable to Ca(2+) and critical for Ca(2+)-dependent scramblase activity during blood coagulation. PAPERFLICK:
Assuntos
Coagulação Sanguínea , Plaquetas/metabolismo , Cálcio/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Ambystoma mexicanum , Animais , Anoctamina-1 , Anoctaminas , Canais de Cloreto/metabolismo , Hemostasia , Metabolismo dos Lipídeos , Megacariócitos/metabolismo , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , XenopusRESUMO
Because host kinases are key regulators of multiple signaling pathways in response to viral infections, we previously screened a kinase inhibitor library using rhabdomyosarcoma cells and human intestinal organoids in parallel to identify potent inhibitors against EV-A71 infection. We found that Rho-associated coiled-coil-containing protein kinase (Rock) inhibitor efficiently suppressed the EV-A71 replication and further revealed Rock1 as a novel EV-A71 host factor. In this study, subsequent analysis found that a variety of vascular endothelial growth factor receptor (VEGFR) inhibitors also had potent antiviral effects. Among the hits, Pazopanib, with a selectivity index as high as 254, which was even higher than that of Pirodavir, a potent broad-spectrum picornavirus inhibitor targeting viral capsid protein VP1, was selected for further analysis. We demonstrated that Pazopanib not only efficiently suppressed the replication of EV-A71 in a dose-dependent manner, but also exhibited broad-spectrum anti-enterovirus activity. Mechanistically, Pazopanib probably induces alterations in host cells, thereby impeding viral genome replication and transcription. Notably, VEGFR2 knockdown and overexpression suppressed and facilitated EV-A71 replication, respectively, indicating that VEGFR2 is a novel host dependency factor for EV-A71 replication. Transcriptome analysis further proved that VEGFR2 potentially plays a crucial role in combating EV-A71 infection through the TSAd-Src-PI3K-Akt pathway. These findings expand the range of potential antiviral candidates of anti-enterovirus therapeutics and suggest that VEGFR2 may be a key host factor involved in EV-A71 replication, making it a potential target for the development of anti-enterovirus therapeutics. IMPORTANCE: As the first clinical case was identified in the United States, EV-A71, a significant neurotropic enterovirus, has been a common cause of hand, foot, and mouth disease (HFMD) in infants and young children. Developing an effective antiviral agent for EV-A71 and other human enteroviruses is crucial, as these viral pathogens consistently cause outbreaks in humans. In this study, we demonstrated that multiple inhibitors against VEGFRs effectively reduced EV-A71 replication, with Pazopanib emerging as the top candidate. Furthermore, Pazopanib also attenuated the replication of other enteroviruses, including CVA10, CVB1, EV-D70, and HRV-A, displaying broad-spectrum anti-enterovirus activity. Given that Pazopanib targets various VEGFRs, we narrowed the focus to VEGFR2 using knockdown and overexpression experiments. Transcriptomic analysis suggests that Pazopanib's potential downstream targets involve the TSAd-Src-PI3K-Akt pathway. Our work may contribute to identifying targets for antiviral inhibitors and advancing treatments for human enterovirus infections.
Assuntos
Antivirais , Enterovirus Humano A , Pirimidinas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Replicação Viral , Humanos , Replicação Viral/efeitos dos fármacos , Pirimidinas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Enterovirus Humano A/efeitos dos fármacos , Enterovirus Humano A/fisiologia , Antivirais/farmacologia , Infecções por Enterovirus/virologia , Infecções por Enterovirus/tratamento farmacológico , Infecções por Enterovirus/metabolismo , Sulfonamidas/farmacologia , Indazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Piperidinas , PiridazinasRESUMO
Antibody therapeutics for the treatment of COVID-19 have been highly successful. However, the recent emergence of the Omicron variant has posed a challenge, as it evades detection by most existing SARS-CoV-2 neutralizing antibodies (nAbs). Here, we successfully generated a panel of SARS-CoV-2/SARS-CoV cross-neutralizing antibodies by sequential immunization of the two pseudoviruses. Of the potential candidates, we found that nAbs X01, X10, and X17 offer broad neutralizing potential against most variants of concern, with X17 further identified as a Class 5 nAb with undiminished neutralization against the Omicron variant. Cryo-electron microscopy structures of the three antibodies together in complex with each of the spike proteins of the prototypical SARS-CoV, SARS-CoV-2, and Delta and Omicron variants of SARS-CoV-2 defined three nonoverlapping conserved epitopes on the receptor-binding domain. The triple-antibody mixture exhibited enhanced resistance to viral evasion and effective protection against infection of the Beta variant in hamsters. Our findings will aid the development of antibody therapeutics and broad vaccines against SARS-CoV-2 and its emerging variants.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , SARS-CoV-2 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Sequência Conservada , Cricetinae , Microscopia Crioeletrônica , Epitopos/imunologia , Humanos , Camundongos , Testes de Neutralização , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
Two-dimensional (2D) alloys hold great promise to serve as important components of 2D transistors, since their properties allow continuous regulation by varying their compositions. However, previous studies are mainly limited to the metallic/semiconducting ones as contact/channel materials, but very few are related to the insulating dielectrics. Here, we use a facile one-step chemical vapor deposition (CVD) method to synthesize ultrathin Bi2SixGe1-xO5 dielectric alloys, whose composition is tunable over the full range of x just by changing the relative ratios of the GeO2/SiO2 precursors. Moreover, their dielectric properties are highly composition-tunable, showing a record-high dielectric constant of >40 among CVD-grown 2D insulators. The vertically grown nature of Bi2GeO5 and Bi2SixGe1-xO5 enables polymer-free transfer and subsequent clean van der Waals integration as the high-κ encapsulation layer to enhance the mobility of 2D semiconductors. Besides, the MoS2 transistors using Bi2SixGe1-xO5 alloy as gate dielectrics exhibit a large Ion/Ioff (>108), ideal subthreshold swing of â¼61 mV/decade, and a small gate hysteresis (â¼5 mV). Our work not only gives very few examples on controlled CVD growth of insulating dielectric alloys but also expands the family of 2D single-crystalline high-κ dielectrics.
RESUMO
BACKGROUND & AIMS: Mechanisms behind the impaired response of antigen-specific B cells to therapeutic vaccination in chronic hepatitis B virus (HBV) infection remain unclear. The development of vaccines or strategies to overcome this obstacle is vital for advancing the management of chronic hepatitis B. METHODS: A mouse model, denominated as E6F6-B, was engineered to feature a knock-in of a B-cell receptor (BCR) that specifically recognizes HBsAg. This model served as a valuable tool for investigating the temporal and spatial dynamics of humoral responses following therapeutic vaccination under continuous antigen exposure. Using a suite of immunological techniques, we elucidated the differentiation trajectory of HBsAg-specific B cells post-therapeutic vaccination in HBV carrier mice. RESULTS: Utilizing the E6F6-B transfer model, we observed a marked decline in antibody-secreting cells 2 weeks after vaccination. A dysfunctional and atypical pre-plasma cell population (BLIMP-1+ IRF4+ CD40- CD138- BCMA-) emerged, manifested by sustained BCR signaling. By deploying an antibody to purge persistent HBsAg, we effectively prompted the therapeutic vaccine to provoke conventional plasma cell differentiation. This resulted in an enhanced anti-HBs antibody response and facilitated HBsAg clearance. CONCLUSIONS: Sustained high levels of HBsAg limit the ability of therapeutic hepatitis B vaccines to induce the canonical plasma cell differentiation necessary for anti-HBs antibody production. Employing a strategy combining antibodies with vaccines can surmount this altered humoral response associated with atypical pre-plasma cells, leading to improved therapeutic efficacy in HBV carrier mice. IMPACT AND IMPLICATIONS: Therapeutic vaccines aimed at combatting HBV encounter suboptimal humoral responses in clinical settings, and the mechanisms impeding their effectiveness have remained obscure. Our research, utilizing the innovative E6F6-B mouse transfer model, reveals that the persistence of HBsAg can lead to the emergence of an atypical pre-plasma cell population, which proves to be relevant to the potency of therapeutic HBV vaccines. Targeting the aberrant differentiation process of these atypical pre-plasma cells stands out as a critical strategy to amplify the humoral response elicited by HBV therapeutic vaccines in carrier mouse models. This discovery suggests a compelling avenue for further study in the context of human chronic hepatitis B. Encouragingly, our findings indicate that synergistic therapy combining HBV-specific antibodies with vaccines offers a promising approach that could significantly advance the pursuit of a functional cure for HBV.
Assuntos
Hepatite B Crônica , Hepatite B , Camundongos , Humanos , Animais , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Vacinas contra Hepatite B/uso terapêutico , Anticorpos Anti-Hepatite B , Diferenciação Celular , Hepatite B/prevenção & controle , Hepatite B/tratamento farmacológicoRESUMO
BACKGROUND: Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS: 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS: The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.
Assuntos
Lacase , Família Multigênica , Phaseolus , Filogenia , Estresse Fisiológico , Phaseolus/genética , Phaseolus/enzimologia , Phaseolus/fisiologia , Lacase/genética , Lacase/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Genes de PlantasRESUMO
Selective separation of ethylene and ethane (C2H4/C2H6) is a formidable challenge due to their close molecular size and boiling point. Compared to industry-used cryogenic distillation, adsorption separation would offer a more energy-efficient solution when an efficient adsorbent is available. Herein, a class of C2H4/C2H6 separation adsorbents, doped carbon molecular sieves (d-CMSs) is reported which are prepared from the polymerization and subsequent carbonization of resorcinol, m-phenylenediamine, and formaldehyde in ethanol solution. The study demonstrated that the polymer precursor themselves can be a versatile platform for modifying the pore structure and surface functional groups of their derived d-CMSs. The high proportion of pores centered at 3.5 Å in d-CMSs contributes significantly to achieving a superior kinetic selectivity of 205 for C2H4/C2H6 separation. The generated pyrrolic-N and pyridinic-N functional sites in d-CMSs contribute to a remarkable elevation of Henry selectivity to 135 due to the enhancement of the surface polarity in d-CMSs. By balancing the synergistic effects of kinetics and thermodynamics, d-CMSs achieve efficient separation of C2H4/C2H6. Polymer-grade C2H4 of 99.71% purity can be achieved with 75% recovery using the devised d-CMSs as reflected in a two-bed vacuum swing adsorption simulation.
RESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant is becoming a dominant circulator and has several mutations in the spike glycoprotein, which may cause shifts of immunogenicity, so as to result in immune escape and breakthrough infection among the already infected or vaccinated populations. It is unclear whether infection with Omicron could generate adequate cross-variant protection. To investigate this possibility, we used Syrian hamsters as an animal model for infection of SARS-CoV-2. The serum from Omicron BA.1 variant-infected hamsters showed a significantly lower neutralization effect against infection of the same or different SARS-CoV-2 variants than the serum from Beta variant-infected hamsters. Furthermore, the serum from Omicron BA.1 variant-infected hamsters were insufficient to protect against rechallenge of SARS-CoV-2 Prototype, Beta and Delta variants and itself. Importantly, we found that rechallenge with different SARS-CoV-2 lineages elevated cross-variant serum neutralization titers. Overall, our findings indicate a weakened immunogenicity feature of Omicron BA.1 variant that can be overcome by rechallenge of a different SARS-CoV-2 lineages. Our results may lead to a new guideline in generation and use of the vaccinations to combat the pandemic of SARS-CoV-2 Omicron variant and possible new variants. IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant causes breakthrough infections among convalescent patients and vaccinated populations. However, Omicron does not generate robust cross-protective responses. Here, we investigate whether heterologous SARS-CoV-2 challenge is able to enhance antibody response in a sensitive animal model, namely, Syrian hamster. Of note, a heterologous challenge of Beta and Omicron BA.1 variant significantly broadens the breadth of SARS-CoV-2 neutralizing responses against the prototype, Beta, Delta, and Omicron BA.1 variants. Our findings confirm that vaccination strategy with heterologous antigens might be a good option to protect against the evolving SARS-CoV-2.
Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Anticorpos Neutralizantes , Anticorpos Antivirais , Antígenos Heterófilos/imunologia , Infecções Irruptivas , COVID-19/prevenção & controle , Mesocricetus , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Imunogenicidade da VacinaRESUMO
BACKGROUND: Cervical squamous cell carcinoma (CSCC) is a prevalent gynecological malignancy worldwide. Current treatments for CSCC can impact fertility and cause long-term complications, underscoring the need for new therapeutic strategies. Oncolytic virotherapy has emerged as a promising option for cancer treatment. Previous research has demonstrated the oncolytic activity of the coxsackievirus B3 strain 2035 A (CVB3/2035A) against various tumor types. This study aims to evaluate the clinical viability of CVB3/2035A for CSCC treatment, focusing on its oncolytic effect in patient-derived CSCC organoids. METHODS: The oncolytic effects of CVB3/2035A were investigated using human CSCC cell lines in vitro and mouse xenograft models in vivo. Preliminary tests for tumor-selectivity were conducted on patient-derived CSCC tissue samples and compared to normal cervical tissues ex vivo. Three patient-derived CSCC organoid lines were developed and treated with CVB3/2035A alone and in combination with paclitaxel. Both cytotoxicity and virus replication were evaluated in vitro. RESULTS: CVB3/2035A exhibited significant cytotoxic effects in human CSCC cell lines and xenograft mouse models. The virus selectively induced oncolysis in patient-derived CSCC tissue samples while sparing normal cervical tissues ex vivo. In patient-derived CSCC organoids, which retained the immunohistological characteristics of the original tumors, CVB3/2035A also demonstrated significant cytotoxic effects and efficient replication, as evidenced by increased viral titers and presence of viral nucleic acids and proteins. Notably, the combination of CVB3/2035A and paclitaxel resulted in enhanced cytotoxicity and viral replication. CONCLUSIONS: CVB3/2035A showed oncolytic activity in CSCC cell lines, xenografts, and patient-derived tissue cultures and organoids. Furthermore, the virus exhibited synergistic anti-tumor effects with paclitaxel against CSCC. These results suggest CVB3/2035A could serve as an alternative or adjunct to current CSCC chemotherapy regimens.
Assuntos
Carcinoma de Células Escamosas , Enterovirus Humano B , Terapia Viral Oncolítica , Vírus Oncolíticos , Organoides , Paclitaxel , Neoplasias do Colo do Útero , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Feminino , Organoides/virologia , Camundongos , Enterovirus Humano B/fisiologia , Enterovirus Humano B/efeitos dos fármacos , Terapia Viral Oncolítica/métodos , Carcinoma de Células Escamosas/virologia , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/tratamento farmacológico , Vírus Oncolíticos/fisiologia , Linhagem Celular Tumoral , Replicação Viral/efeitos dos fármacosRESUMO
Circular RNAs (circRNAs) represent a novel class of non-coding RNAs that play significant roles in tumorigenesis and tumor progression. High-throughput sequencing of gastric cancer (GC) tissues has identified circRNA BIRC6 (circBIRC6) as a potential circRNA derived from the BIRC6 gene, exhibiting significant upregulation in GC tissues. The expression of circBIRC6 is notably elevated in GC patients. Functionally, it acts as a molecular sponge for miR-488, consequently upregulating GRIN2D expression and promoting GC proliferation, migration, and invasion. Moreover, overexpression of circBIRC6 leads to increased GRIN2D expression, which in turn enhances caveolin-1 (CAV1) expression, resulting in autophagy deficiency due to miR-488 sequestration. This cascade of events significantly influences tumorigenesis in vivo. Our findings collectively illustrate that the CircBIRC6-miR-488-GRIN2D axis fosters CAV1 expression in GC cells, thereby reducing autophagy levels. Both circBIRC6 and GRIN2D emerge as potential targets for treatment and independent prognostic factors for GC patients.
Assuntos
MicroRNAs , Neoplasias Gástricas , Humanos , Autofagia , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Gástricas/patologiaRESUMO
Exercise training effectively relieves anxiety disorders via modulating specific brain networks. The role of post-translational modification of proteins in this process, however, has been underappreciated. Here we performed a mouse study in which chronic restraint stress-induced anxiety-like behaviors can be attenuated by 14-day persistent treadmill exercise, in association with dramatic changes of protein phosphorylation patterns in the medial prefrontal cortex (mPFC). In particular, exercise was proposed to modulate the phosphorylation of Nogo-A protein, which drives the ras homolog family member A (RhoA)/ Rho-associated coiled-coil-containing protein kinases 1(ROCK1) signaling cascade. Further mechanistic studies found that liver-derived kynurenic acid (KYNA) can affect the kynurenine metabolism within the mPFC, to modulate this RhoA/ROCK1 pathway for conferring stress resilience. In sum, we proposed that circulating KYNA might mediate stress-induced anxiety-like behaviors via protein phosphorylation modification within the mPFC, and these findings shed more insights for the liver-brain communications in responding to both stress and physical exercise.
Assuntos
Ansiedade , Ácido Cinurênico , Fígado , Camundongos Endogâmicos C57BL , Proteínas Nogo , Córtex Pré-Frontal , Estresse Psicológico , Animais , Córtex Pré-Frontal/metabolismo , Fosforilação , Ácido Cinurênico/metabolismo , Masculino , Ansiedade/metabolismo , Estresse Psicológico/metabolismo , Fígado/metabolismo , Camundongos , Proteínas Nogo/metabolismo , Condicionamento Físico Animal/fisiologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Comportamento Animal , Transdução de SinaisRESUMO
The ability to delay gratification is crucial for a successful and healthy life. An effective way for young children to learn this ability is to observe the action of adult models. However, the underlying neurocomputational mechanism remains unknown. Here, we tested the hypotheses that children employed either the simple imitation strategy or the goal-inference strategy when learning from adult models in a high-uncertainty context. Results of computational modeling indicated that children used the goal-inference strategy regardless of whether the adult model was their mother or a stranger. At the neural level, results showed that successful learning of delayed gratification was associated with enhanced interpersonal neural synchronization (INS) between children and the adult models in the dorsal lateral prefrontal cortex but was not associated with children's own single-brain activity. Moreover, the discounting of future reward's value obtained from computational modeling of the goal-inference strategy was positively correlated with the strength of INS. These findings from our exploratory study suggest that, even for 3-year-olds, the goal-inference strategy is used to learn delayed gratification from adult models, and the learning strategy is associated with neural interaction between the brains of children and adult models.
Assuntos
Desvalorização pelo Atraso , Adulto , Feminino , Humanos , Criança , Pré-Escolar , Recompensa , Córtex Pré-Frontal , Aprendizagem , MotivaçãoRESUMO
The Varicella zoster virus (VZV), responsible for both varicella (chickenpox) and herpes zoster (shingles), presents significant global health challenges. While primary VZV infection primarily affects children, leading to chickenpox, reactivation in later life can result in herpes zoster and associated post-herpetic neuralgia, among other complications. Vaccination remains the most effective strategy for VZV prevention, with current vaccines largely based on the attenuated vOka strains. Although these vaccines are generally effective, they can induce varicella-like rashes and have sparked concerns regarding cell virulence. As a safer alternative, subunit vaccines circumvent these issues. In this study, we developed a nanoparticle-based vaccine displaying the glycoprotein E (gE) on ferritin particles using the SpyCatcher/SpyTag system, termed FR-gE. This FR-gE nanoparticle antigen elicited substantial gE-specific binding and VZV-neutralizing antibody responses in BALB/c and C57BL/6 mice-responses that were up to 3.2-fold greater than those elicited by the subunit gE while formulated with FH002C, aluminum hydroxide, or a liposome-based XUA01 adjuvant. Antibody subclass analysis revealed that FR-gE produced comparable levels of IgG1 and significantly higher levels of IgG2a compared to subunit gE, indicating a Th1-biased immune response. Notably, XUA01-adjuvanted FR-gE induced a significant increase in neutralizing antibody response compared to the live attenuated varicella vaccine and recombinant vaccine, Shingrix. Furthermore, ELISPOT assays demonstrated that immunization with FR-gE/XUA01 generated IFN-γ and IL-2 levels comparable to those induced by Shingrix. These findings underscore the potential of FR-gE as a promising immunogen for the development of varicella and herpes zoster vaccines.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Herpesvirus Humano 3 , Nanopartículas , Linfócitos T , Proteínas do Envelope Viral , Animais , Nanopartículas/química , Herpesvirus Humano 3/imunologia , Proteínas do Envelope Viral/imunologia , Anticorpos Neutralizantes/imunologia , Camundongos , Anticorpos Antivirais/imunologia , Linfócitos T/imunologia , Camundongos Endogâmicos BALB C , Feminino , Camundongos Endogâmicos C57BL , HumanosRESUMO
Zika virus (ZIKV) is transmitted mostly via mosquito bites and no vaccine is available, so it may reemerge. We and others previously demonstrated that neonatal infection of ZIKV results in heart failure and can be fatal. Animal models implicated ZIKV involvement in viral heart diseases. It is unknown whether and how ZIKV causes heart failure in adults. Herein, we studied the effects of ZIKV infection on the heart function of adult A129 mice. First, we found that ZIKV productively infects the rat-, mouse-, or human-originated heart cell lines and caused ubiquitination-mediated degradation of and distortive effects on connexin 43 (Cx43) protein that is important for communications between cardiomyocytes. Second, ZIKV infection caused 100% death of the A129 mice with decreasing body weight, worsening health score, shrugging fur, and paralysis. The viral replication was detected in multiple organs. In searching for the viral effects on heart of the A129 mice, we found that ZIKV infection resulted in the increase of cardiac muscle enzymes, implicating a viral acute myocardial injury. ZIKV-caused heart injury was also demonstrated by electrocardiogram (ECG) showing widened and fragmented QRS waves, prolonged PR interval, and slower heart rate. The intercalated disc (ICD) between two cardiomyocytes was destroyed, as shown by the electronic microscopy, and the Cx43 distribution in the ICDs was less organized in the ZIKV-infected mice compared to that in the phosphate-buffered saline (PBS)-treated mice. Consistently, ZIKV productively infected the heart of A129 mice and decreased Cx43 protein. Therefore, we demonstrated that ZIKV infection caused heart failure, which might lead to fatal sequelae in ZIKV-infected A129 mice. IMPORTANCE Zika virus (ZIKV) is a teratogen causing devastating sequelae to the newborns who suffer a congenital ZIKV infection while it brings about only mild symptoms to the health-competent older children or adults. Mouse models have played an important role in mechanistic and pathogenic studies of ZIKV. In this study, we employed 3 to 4 week-old A129 mice for ZIKV infection. RT-qPCR assays discovered that ZIKV replicated in multiple organs, including the heart. As a result of ZIKV infection, the A129 mice experienced weight loss, health score worsening, paralysis, and deaths. We revealed that the ZIKV infection caused abnormal electrocardiogram presentations, increased cardiac muscle enzymes, downregulated Cx43, and destroyed the gap junction and the intercalated disc between the cardiomyocytes, implicating that ZIKV may cause an acute myocardial injury in A129 mice. Therefore, our data imply that ZIKV infection may jeopardize the immunocompromised population with a severe clinical consequence, such as heart defect.
Assuntos
Cardiopatias , Insuficiência Cardíaca , Infecção por Zika virus , Zika virus , Recém-Nascido , Criança , Animais , Camundongos , Humanos , Ratos , Adolescente , Conexina 43 , Miócitos Cardíacos/patologia , Modelos Animais de Doenças , Junções Comunicantes/patologia , ParalisiaRESUMO
Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.
Assuntos
Glycine max , Transcriptoma , Glycine max/genética , Transcriptoma/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sementes/genéticaRESUMO
RNA therapy represents a great way to precisely regulate cellular processes by modulating the gene expression. Despite this potential, a profound gap exists in our knowledge of how to subsequently deliver these RNAs into the specific target cells and turn therapeutically active RNAs into practical medicines. An advanced series of interlocked, thermodynamically self-regulated processes that enable the precise assembly of functional synthetic carriers of siRNA to the target cells in vivo was developed. To demonstrate the efficacy of this delivery system, we used it to treat human cytomegalovirus (HCMV) infection in a humanized mouse model. In this study, we use small interfering RNA (siRNA) and small complementary RNA (scRNA) to inhibit the expressions of two HCMV genes, IE1 and IE2. The auto-regulated nanocarrier polywraplex with core-shell structure was designed to condense and package these RNAs for delivering. To allow these particles recognize the HCMV-infected cells, a ligand was coupled on the surface of nanoparticle, which would specifically target the HCMV-encoded CX3 CL1 chemokine receptor presented in the HCMV-infected cells. The results demonstrated that the polywraplex conjugated with the target molecule CX3 CL1 effectively and specifically delivered the siRNA/scRNA to HCMV infected cells and inhibited virus growth in vitro and in vivo.
Assuntos
Infecções por Citomegalovirus , Proteínas Imediatamente Precoces , Ácidos Nucleicos , Animais , Camundongos , Humanos , Proteínas Imediatamente Precoces/genética , Transativadores/genética , Citomegalovirus/genética , Infecções por Citomegalovirus/terapia , Infecções por Citomegalovirus/genética , RNA Interferente Pequeno/genéticaRESUMO
Norovirus is the primary foodborne pathogenic agent causing viral acute gastroenteritis. It possesses broad genetic diversity and the prevalence of different genotypes varies substantially. However, the differences in RNA-dependent RNA polymerase (RdRp) activity among different genotypes of noroviruses remain unclear. In this study, the molecular mechanism of RdRp activity difference between the epidemic strain GII.17[P17] and the non-epidemic strain GII.8[P8] was characterized. By evaluating the evolutionary history of RdRp sequences with Markov Chain Monte Carlo method, the evolution rate of GII.17[P17] variants was higher than that of GII.8[P8] variants (1.22 × 10-3 nucleotide substitutions/site/year to 9.31 × 10-4 nucleotide substitutions/site/year, respectively). The enzyme catalytic reaction demonstrated that the Vmax value of GII.17[P17] RdRp was 2.5 times than that of GII.8[P8] RdRp. And the Km of GII.17[P17] and GII.8[P8] RdRp were 0.01 and 0.15 mmol/L, respectively. Then, GII.8[P8] RdRp fragment mutants (A-F) were designed, among which GII.8[P8]-A/B containing the conserved motif G/F were found to have significant effects on improving RdRp activity. The Km values of GII.8[P8]-A/B reached 0.07 and 0.06 mmol/L, respectively. And their Vmax values were 1.34 times than that of GII.8[P8] RdRp. In summary, our results suggested that RdRp activities were correlated with their epidemic characteristics. These findings will ultimately provide a better understanding in replication mechanism of noroviruses and development of antiviral drugs.
Assuntos
Infecções por Caliciviridae , Norovirus , Humanos , Norovirus/genética , Variação Genética , Infecções por Caliciviridae/epidemiologia , Genótipo , RNA Polimerase Dependente de RNA/genética , Nucleotídeos , FilogeniaRESUMO
BACKGROUND AND AIMS: Human bone marrow mesenchymal stem cells (hBMSCs) are important for developing a dual-humanized mouse model to clarify disease pathogenesis. We aimed to elucidate the characteristics of hBMSC transdifferentiation into liver and immune cells. METHODS: A single type of hBMSCs was transplanted into immunodeficient Fah-/- Rag2-/- IL-2Rγc-/- SCID (FRGS) mice with fulminant hepatic failure (FHF). Liver transcriptional data from the hBMSC-transplanted mice were analysed to identify transdifferentiation with traces of liver and immune chimerism. RESULTS: Mice with FHF were rescued by implanted hBMSCs. Human albumin/leukocyte antigen (HLA) and CD45/HLA double-positive hepatocytes and immune cells were observed in the rescued mice during the initial 3 days. The transcriptomics analysis of liver tissues from dual-humanized mice identified two transdifferentiation phases (cellular proliferation at 1-5 days and cellular differentiation/maturation at 5-14 days) and ten cell lineages transdifferentiated from hBMSCs: human hepatocytes, cholangiocytes, stellate cells, myofibroblasts, endothelial cells and immune cells (T/B/NK/NKT/Kupffer cells). Two biological processes, hepatic metabolism and liver regeneration, were characterized in the first phase, and two additional biological processes, immune cell growth and extracellular matrix (ECM) regulation, were observed in the second phase. Immunohistochemistry verified that the ten hBMSC-derived liver and immune cells were present in the livers of dual-humanized mice. CONCLUSIONS: A syngeneic liver-immune dual-humanized mouse model was developed by transplanting a single type of hBMSC. Four biological processes linked to the transdifferentiation and biological functions of ten human liver and immune cell lineages were identified, which may help to elucidate the molecular basis of this dual-humanized mouse model for further clarifying disease pathogenesis.
Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Células Endoteliais , Transcriptoma , Camundongos SCID , Fígado/patologia , Células-Tronco Mesenquimais/metabolismoRESUMO
Calcium-activated chloride channels (CaCCs) are major regulators of sensory transduction, epithelial secretion, and smooth muscle contraction. Other crucial roles of CaCCs include action potential generation in Characean algae and prevention of polyspermia in frog egg membrane. None of the known molecular candidates share properties characteristic of most CaCCs in native cells. Using Axolotl oocytes as an expression system, we have identified TMEM16A as the Xenopus oocyte CaCC. The TMEM16 family of "transmembrane proteins with unknown function" is conserved among eukaryotes, with family members linked to tracheomalacia (mouse TMEM16A), gnathodiaphyseal dysplasia (human TMEM16E), aberrant X segregation (a Drosophila TMEM16 family member), and increased sodium tolerance (yeast TMEM16). Moreover, mouse TMEM16A and TMEM16B yield CaCCs in Axolotl oocytes and mammalian HEK293 cells and recapitulate the broad CaCC expression. The identification of this new family of ion channels may help the development of CaCC modulators for treating diseases including hypertension and cystic fibrosis.