Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 143(4): 559-605, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38436667

RESUMO

Much of our current understanding of rare human diseases is driven by coding genetic variants. However, non-coding genetic variants play a pivotal role in numerous rare human diseases, resulting in diverse functional impacts ranging from altered gene regulation, splicing, and/or transcript stability. With the increasing use of genome sequencing in clinical practice, it is paramount to have a clear framework for understanding how non-coding genetic variants cause disease. To this end, we have synthesized the literature on hundreds of non-coding genetic variants that cause rare Mendelian conditions via the disruption of gene regulatory patterns and propose a functional classification system. Specifically, we have adapted the functional classification framework used for coding variants (i.e., loss-of-function, gain-of-function, and dominant-negative) to account for features unique to non-coding gene regulatory variants. We identify that non-coding gene regulatory variants can be split into three distinct categories by functional impact: (1) non-modular loss-of-expression (LOE) variants; (2) modular loss-of-expression (mLOE) variants; and (3) gain-of-ectopic-expression (GOE) variants. Whereas LOE variants have a direct corollary with coding loss-of-function variants, mLOE and GOE variants represent disease mechanisms that are largely unique to non-coding variants. These functional classifications aim to provide a unified terminology for categorizing the functional impact of non-coding variants that disrupt gene regulatory patterns in Mendelian conditions.


Assuntos
Variação Genética , Humanos , Regulação da Expressão Gênica , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/classificação , Predisposição Genética para Doença
2.
Nat Commun ; 15(1): 4163, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755145

RESUMO

TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.


Assuntos
Esclerose Lateral Amiotrófica , Asparaginase , Proteínas de Ligação a DNA , Neurônios , Proteinopatias TDP-43 , Animais , Feminino , Humanos , Masculino , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Asparaginase/genética , Asparaginase/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios/metabolismo , Neurônios/patologia , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia , Proteinopatias TDP-43/genética , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA