Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant Cell Environ ; 46(1): 23-44, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200623

RESUMO

Photosynthetic manipulation provides new opportunities for enhancing crop yield. However, understanding and quantifying the importance of individual and multiple manipulations on the seasonal biomass growth and yield performance of target crops across variable production environments is limited. Using a state-of-the-art cross-scale model in the APSIM platform we predicted the impact of altering photosynthesis on the enzyme-limited (Ac ) and electron transport-limited (Aj ) rates, seasonal dynamics in canopy photosynthesis, biomass growth, and yield formation via large multiyear-by-location crop growth simulations. A broad list of promising strategies to improve photosynthesis for C3 wheat and C4 sorghum were simulated. In the top decile of seasonal outcomes, yield gains were predicted to be modest, ranging between 0% and 8%, depending on the manipulation and crop type. We report how photosynthetic enhancement can affect the timing and severity of water and nitrogen stress on the growing crop, resulting in nonintuitive seasonal crop dynamics and yield outcomes. We predicted that strategies enhancing Ac alone generate more consistent but smaller yield gains across all water and nitrogen environments, Aj enhancement alone generates larger gains but is undesirable in more marginal environments. Large increases in both Ac and Aj generate the highest gains across all environments. Yield outcomes of the tested manipulation strategies were predicted and compared for realistic Australian wheat and sorghum production. This study uniquely unpacks complex cross-scale interactions between photosynthesis and seasonal crop dynamics and improves understanding and quantification of the potential impact of photosynthesis traits (or lack of it) for crop improvement research.


Assuntos
Nitrogênio , Água , Austrália
2.
J Exp Bot ; 72(18): 6596-6610, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34125876

RESUMO

Wheat grain yield is anticipated to suffer from the increased temperatures expected under climate change. In particular, the effects of post-anthesis temperatures on grain growth and development must be better understood in order to improve crop models. Grain growth and development involve several processes, and we hypothesized that some of the most important processes, namely grain dry biomass and water accumulation, grain volume expansion, and endosperm cell proliferation, will have different thermal sensitivity. To assess this, we established temperature-response curves of these processes for steady post-anthesis temperatures between 15 °C and 36 °C. From anthesis to maturity, grain dry mass, water mass, volume, and endosperm cell number were monitored, whilst considering grain temperature. Different sensitivities to heat of these various processes were revealed. The rate of grain dry biomass accumulation increased linearly up to 25 °C, while the reciprocal of its duration increased linearly up to at least 32 °C. In contrast, the growth rates of traits contributing to grain expansion, such as increase in grain volume and cell numbers, had higher optimum temperatures, while the reciprocal of their durations were significantly lower. These temperature-response curves can contribute to improve current crop models, and allow targeting of specific mechanisms for genetic and genomic studies.


Assuntos
Temperatura Alta , Triticum , Biomassa , Grão Comestível , Endosperma
3.
Glob Chang Biol ; 26(7): 4079-4093, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32320514

RESUMO

Early vigour in wheat is a trait that has received attention for its benefits reducing evaporation from the soil surface early in the season. However, with the growth enhancement common to crops grown under elevated atmospheric CO2 concentrations (e[CO2 ]), there is a risk that too much early growth might deplete soil water and lead to more severe terminal drought stress in environments where production relies on stored soil water content. If this is the case, the incorporation of such a trait in wheat breeding programmes might have unintended negative consequences in the future, especially in dry years. We used selected data from cultivars with proven expression of high and low early vigour from the Australian Grains Free Air CO2 Enrichment (AGFACE) facility, and complemented this analysis with simulation results from two crop growth models which differ in the modelling of leaf area development and crop water use. Grain yield responses to e[CO2 ] were lower in the high early vigour group compared to the low early vigour group, and although these differences were not significant, they were corroborated by simulation model results. However, the simulated lower response with high early vigour lines was not caused by an earlier or greater depletion of soil water under e[CO2 ] and the mechanisms responsible appear to be related to an earlier saturation of the radiation intercepted. Whether this is the case in the field needs to be further investigated. In addition, there was some evidence that the timing of the drought stress during crop growth influenced the effect of e[CO2 ] regardless of the early vigour trait. There is a need for FACE investigations of the value of traits for drought adaptation to be conducted under more severe drought conditions and variable timing of drought stress, a risky but necessary endeavour.


Assuntos
Secas , Triticum , Austrália , Dióxido de Carbono/análise , Grão Comestível/química
4.
Int J Biometeorol ; 63(4): 511-521, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30756175

RESUMO

In the semi-arid climatic conditions, water shortage is a key factor to generate crop production. Planting in autumn and winter and using precipitation can help cope with the problem. But in the semi-arid areas with cold winter, frost is another limited factor affecting crop production. For this purpose, in the present study, a simple and universal crop growth simulator (SUCROS) model was used to estimate the potential yield of sugar beets and frost damage from 1993 to 2009 for four autumn sowing dates (2 October, 17 October, 1 November, and 16 November) and two spring dates (6 March and 6 May) in eight locations (Birjand, Bojnord, Ghaen, Mashhad, Torbat-e Heydarieh, Neyshabor, Torbat-e Jam, and Ghochan) of the Khorasan province in northeastern Iran as a semi-arid and cold area. There was a large variability between locations and years in terms of frost damage. The crop failure from frost for the autumn sowing dates ranged from 62.5 to 100% at Neyshabor and Ghochan, respectively. Although autumn sowing dates performed better than spring sowing dates in terms of fresh storage organ yield (~ 109.9 t ha-1 vs. ~ 78.4 t ha-1), the risk of frost stress under autumn sowing dates was high at all studied locations. To maximize potential yield and minimize frost risk, sugar beet farmers under semi-arid and frost-prone conditions in the world such as Khorasan province should choose optimum sowing dates outside the high frost risk period to avoid crop damage. The last frost day under these areas normally happened between the 15th and 28th of February, after which no frost events occurred. Accordingly, it is recommended to farmers to sow sugar beet after the period during which no frost risk for sugar beet occurred.


Assuntos
Beta vulgaris/crescimento & desenvolvimento , Congelamento/efeitos adversos , Modelos Teóricos , Agricultura/métodos , Irã (Geográfico) , Medição de Risco , Estações do Ano
5.
J Exp Bot ; 68(21-22): 5907-5921, 2017 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-29186513

RESUMO

Drought frequently limits Australian wheat production, and the expected future increase in temperatures and rainfall variability will further challenge productivity. A modelling approach captured plant×environment×management interactions to simulate water-stress patterns experienced by wheat crops at representative locations across the Australian wheatbelt for 33 climate model projections, considering the 'business as usual' emission scenario RCP8.5. The results indicate that projections of future water-stress patterns are region specific. Significant variations in projected impacts were found across climate models, providing local ranges of uncertainty to consider in planning efforts. Most climate models projected an increase in the frequency of severe water-stress conditions in the Western area, the largest producing region, and fewer severe water stresses in other regions. Where found, reductions in water-stress conditions were largely due to shorter crop cycles (a result of warmer temperatures), increased water use efficiency (resulting from increased CO2 levels), and, in some cases, increased local rainfall. Overall, simulations indicate that all areas of the Australian wheatbelt will continue to experience severe water-stress conditions (43.9, 42.6, and 40.2% for 2030, 2050, and 2070 compared with 42.8% for 1990). Given projected frequencies of severe water stress and warmer conditions, efforts towards maintaining or improving yields are essential.


Assuntos
Mudança Climática , Produtos Agrícolas/fisiologia , Secas , Temperatura Alta/efeitos adversos , Triticum/fisiologia , Austrália , Modelos Teóricos , Estresse Fisiológico , Água/metabolismo
6.
J Exp Bot ; 67(17): 5159-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27443279

RESUMO

A stay-green phenotype enables crops to retain green leaves longer after anthesis compared with senescent types, potentially improving yield. Measuring the normalized difference vegetative index (NDVI) during the whole senescence period allows quantification of component stay-green traits contributing to a stay-green phenotype. These objective and standardized traits can be compared across genotypes and environments. Traits examined include maximum NDVI near anthesis (Nmax), senescence rate (SR), a trait integrating senescence (SGint), plus time from anthesis to onset (OnS), mid-point (MidS), and near completion (EndS) of senescence. The correlation between stay-green traits and yield was studied in eight contrasting environments ranging from well watered to severely water limited. Environments were each classified into one of the four major drought environment types (ETs) previously identified for the Australian wheat cropping system. SGint, OnS, and MidS tended to have higher values in higher yielding environments for a given genotype, as well as for higher yielding genotypes within a given environment. Correlation between specific stay-green traits and yield varied with ET. In the studied population, SGint, OnS, and MidS strongly correlated with yield in three of the four ETs which included well-watered environments (0.43-0.86), but less so in environments with only moderate water-stress after anthesis (-0.03 to 0.31). In contrast, Nmax was most highly correlated with yield under moderate post-anthesis water stress (0.31-0.43). Selection for particular stay-green traits, combinations of traits, and/or molecular markers associated with the traits could enhance genetic progress toward stay-green wheats with higher, more stable yield in both well-watered and water-limited conditions.


Assuntos
Folhas de Planta/fisiologia , Triticum/fisiologia , Adaptação Fisiológica , Envelhecimento/fisiologia , Produção Agrícola , Desidratação/fisiopatologia , Meio Ambiente , Folhas de Planta/crescimento & desenvolvimento , Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento
7.
Glob Chang Biol ; 22(2): 921-33, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26432666

RESUMO

By accelerating crop development, warming climates may result in mismatches between key sensitive growth stages and extreme climate events, with severe consequences for crop yield and food security. Using recent estimates of gene responses to vernalization and photoperiod in wheat, we modelled the flowering times of all 'potential' genotypes as influenced by the velocity of climate change across the Australian wheatbelt. In the period 1957-2010, seasonal increases in temperature of 0.012 °C yr(-1) were recorded and changed flowering time of a mid-season wheat genotype by an average -0.074 day yr(-1) , with flowering 'velocity' of up to 0.95 km yr(-1) towards the coastal edges of the wheatbelt; this is an estimate of how quickly the given genotype would have to be 'moved' across the landscape to maintain its original flowering time. By 2030, these national changes are projected to accelerate by up to 3-fold for seasonal temperature and by up to 5-fold for flowering time between now and 2030, with average national shifts in flowering time of 0.33 and 0.41 day yr(-1) between baseline and the worst climate scenario tested for 2030 and 2050, respectively. Without new flowering alleles in commercial germplasm, the life cycle of wheat crops is predicted to shorten by 2 weeks by 2030 across the wheatbelt for the most pessimistic climate scenario. While current cultivars may be otherwise suitable for future conditions, they will flower earlier due to warmer temperatures. To allow earlier sowing to escape frost, heat and terminal drought, and to maintain current growing period of early-sown wheat crops in the future, breeders will need to develop and/or introduce new genetic sources for later flowering, more so in the eastern part of the wheatbelt.


Assuntos
Mudança Climática , Flores/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Austrália , Modelos Teóricos , Melhoramento Vegetal/métodos , Estações do Ano , Temperatura
8.
J Exp Bot ; 66(12): 3611-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25922479

RESUMO

Radiant spring frosts occurring during reproductive developmental stages can result in catastrophic yield loss for wheat producers. To better understand the spatial and temporal variability of frost, the occurrence and impact of frost events on rain-fed wheat production was estimated across the Australian wheatbelt for 1957-2013 using a 0.05 ° gridded weather data set. Simulated yield outcomes at 60 key locations were compared with those for virtual genotypes with different levels of frost tolerance. Over the last six decades, more frost events, later last frost day, and a significant increase in frost impact on yield were found in certain regions of the Australian wheatbelt, in particular in the South-East and West. Increasing trends in frost-related yield losses were simulated in regions where no significant trend of frost occurrence was observed, due to higher mean temperatures accelerating crop development and causing sensitive post-heading stages to occur earlier, during the frost risk period. Simulations indicated that with frost-tolerant lines the mean national yield could be improved by up to 20% through (i) reduced frost damage (~10% improvement) and (ii) the ability to use earlier sowing dates (adding a further 10% improvement). In the simulations, genotypes with an improved frost tolerance to temperatures 1 °C lower than the current 0 °C reference provided substantial benefit in most cropping regions, while greater tolerance (to 3 °C lower temperatures) brought further benefits in the East. The results indicate that breeding for improved reproductive frost tolerance should remain a priority for the Australian wheat industry, despite warming climates.


Assuntos
Congelamento , Triticum/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Austrália , Simulação por Computador , Ecótipo , Genótipo , Geografia , Estações do Ano , Triticum/genética , Triticum/fisiologia
9.
Glob Chang Biol ; 21(11): 4115-27, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26152643

RESUMO

Characterization of drought environment types (ETs) has proven useful for breeding crops for drought-prone regions. Here, we consider how changes in climate and atmospheric carbon dioxide (CO2 ) concentrations will affect drought ET frequencies in sorghum and wheat systems of northeast Australia. We also modify APSIM (the Agricultural Production Systems Simulator) to incorporate extreme heat effects on grain number and weight, and then evaluate changes in the occurrence of heat-induced yield losses of more than 10%, as well as the co-occurrence of drought and heat. More than six million simulations spanning representative locations, soil types, management systems, and 33 climate projections led to three key findings. First, the projected frequency of drought decreased slightly for most climate projections for both sorghum and wheat, but for different reasons. In sorghum, warming exacerbated drought stresses by raising the atmospheric vapor pressure deficit and reducing transpiration efficiency (TE), but an increase in TE due to elevated CO2 more than offset these effects. In wheat, warming reduced drought stress during spring by hastening development through winter and reducing exposure to terminal drought. Elevated CO2 increased TE but also raised radiation-use efficiency and overall growth rates and water use, thereby offsetting much of the drought reduction from warming. Second, adding explicit effects of heat on grain number and grain size often switched projected yield impacts from positive to negative. Finally, although average yield losses associated with drought will remain generally higher than that for heat stress for the next half century, the relative importance of heat is steadily growing. This trend, as well as the likely high degree of genetic variability in heat tolerance, suggests that more emphasis on heat tolerance is warranted in breeding programs. At the same time, work on drought tolerance should continue with an emphasis on drought that co-occurs with extreme heat.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Secas , Temperatura Alta , Sorghum/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , New South Wales , Queensland , Estações do Ano
10.
Front Plant Sci ; 15: 1351436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911974

RESUMO

In crops like wheat, terminal drought is one of the principal stress factors limiting productivity in rain-fed systems. However, little is known about root development after heading, when water uptake can be critical to wheat crops. The impact of water-stress on root growth was investigated in two wheat cultivars, Scout and Mace, under well-watered and post-anthesis water stress in three experiments. Plants were grown outside in 1.5-m long pots at a density similar to local recommended farming practice. Differences in root development were observed between genotypes, especially for water stress conditions under which Scout developed and maintained a larger root system than Mace. While under well-watered conditions both genotypes had shallow roots that appeared to senesce after heading, a moderate water stress stimulated shallow-root growth in Scout but accelerated senescence in Mace. For deep roots, post-heading biomass growth was observed for both genotypes in well-watered conditions, while under moderate water stress, only Scout maintained net growth as Mace deep roots senesced. Water stress of severe intensity affected both genotypes similarly, with root senescence at all depths. Senescence was also observed above ground. Under well-watered conditions, Scout retained leaf greenness (i.e. stay-green phenotype) for slightly longer than Mace. The difference between genotypes accentuated under moderate water stress, with rapid post-anthesis leaf senescence in Mace while Scout leaf greenness was affected little if at all by the stress. As an overall result, grain biomass per plant ('yield') was similar in the two genotypes under well-watered conditions, but more affected by a moderate stress in Mace than Scout. The findings from this study will assist improvement in modelling root systems of crop models, development of relevant phenotyping methods and selection of cultivars with better adaptation to drought.

11.
Sci Rep ; 14(1): 8184, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589535

RESUMO

Climate change threatens food security by affecting the productivity of major cereal crops. To date, agroclimatic risk projections through indicators have focused on expected hazards exposure during the crop's current vulnerable seasons, without considering the non-stationarity of their phenology under evolving climatic conditions. We propose a new method for spatially classifying agroclimatic risks for wheat, combining high-resolution climatic data with a wheat's phenological model. The method is implemented for French wheat involving three GCM-RCM model pairs and two emission scenarios. We found that the precocity of phenological stages allows wheat to avoid periods of water deficit in the near future. Nevertheless, in the coming decades the emergence of heat stress and increasing water deficit will deteriorate wheat cultivation over the French territory. Projections show the appearance of combined risks of heat and water deficit up to 4 years per decade under the RCP 8.5 scenario. The proposed method provides a deep level of information that enables regional adaptation strategies: the nature of the risk, its temporal and spatial occurrence, and its potential combination with other risks. It's a first step towards identifying potential sites for breeding crop varieties to increase the resilience of agricultural systems.


Assuntos
Mudança Climática , Triticum , Melhoramento Vegetal , França , Água
12.
New Phytol ; 198(3): 801-820, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23425331

RESUMO

Plant response to drought is complex, so that traits adapted to a specific drought type can confer disadvantage in another drought type. Understanding which type(s) of drought to target is of prime importance for crop improvement. Modelling was used to quantify seasonal drought patterns for a check variety across the Australian wheatbelt, using 123 yr of weather data for representative locations and managements. Two other genotypes were used to simulate the impact of maturity on drought pattern. Four major environment types summarized the variability in drought pattern over time and space. Severe stress beginning before flowering was common (44% of occurrences), with (24%) or without (20%) relief during grain filling. High variability occurred from year to year, differing with geographical region. With few exceptions, all four environment types occurred in most seasons, for each location, management system and genotype. Applications of such environment characterization are proposed to assist breeding and research to focus on germplasm, traits and genes of interest for target environments. The method was applied at a continental scale to highly variable environments and could be extended to other crops, to other drought-prone regions around the world, and to quantify potential changes in drought patterns under future climates.


Assuntos
Produtos Agrícolas , Secas , Modelos Teóricos , Triticum/fisiologia , Austrália , Simulação por Computador , Flores/fisiologia , Genótipo , Chuva , Estações do Ano , Solo/química , Água , Tempo (Meteorologia)
13.
Plant Phenomics ; 5: 0055, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234427

RESUMO

It is valuable to develop a generic model that can accurately estimate the leaf area index (LAI) of wheat from unmanned aerial vehicle-based multispectral data for diverse soil backgrounds without any ground calibration. To achieve this objective, 2 strategies were investigated to improve our existing random forest regression (RFR) model, which was trained with simulations from a radiative transfer model (PROSAIL). The 2 strategies consisted of (a) broadening the reflectance domain of soil background to generate training data and (b) finding an appropriate set of indicators (band reflectance and/or vegetation indices) as inputs of the RFR model. The RFR models were tested in diverse soils representing varying soil types in Australia. Simulation analysis indicated that adopting both strategies resulted in a generic model that can provide accurate estimation for wheat LAI and is resistant to changes in soil background. From validation on 2 years of field trials, this model achieved high prediction accuracy for LAI over the entire crop cycle (LAI up to 7 m2 m-2) (root mean square error (RMSE): 0.23 to 0.89 m2 m-2), including for sparse canopy (LAI less than 0.3 m2 m-2) grown on different soil types (RMSE: 0.02 to 0.25 m2 m-2). The model reliably captured the seasonal pattern of LAI dynamics for different treatments in terms of genotypes, plant densities, and water-nitrogen managements (correlation coefficient: 0.82 to 0.98). With appropriate adaptations, this framework can be adjusted to any type of sensors to estimate various traits for various species (including but not limited to LAI of wheat) in associated disciplines, e.g., crop breeding, precision agriculture, etc.

14.
Glob Chang Biol ; 18(9): 2899-914, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501066

RESUMO

Extreme climate, especially temperature, can severely reduce wheat yield. As global warming has already begun to increase mean temperature and the occurrence of extreme temperatures, it has become urgent to accelerate the 5-20 year process of breeding for new wheat varieties, to adapt to future climate. We analyzed the patterns of frost and heat events across the Australian wheatbelt based on 50 years of historical records (1960-2009) for 2864 weather stations. Flowering dates of three contrasting-maturity wheat varieties were simulated for a wide range of sowing dates in 22 locations for 'current' climate (1960-2009) and eight future scenarios (high and low CO2 emission, dry and wet precipitation scenarios, in 2030 and 2050). The results highlighted the substantial spatial variability of frost and heat events across the Australian wheatbelt in current and future climates. As both 'last frost' and 'first heat' events would occur earlier in the season, the 'target' sowing and flowering windows (defined as risk less than 10% for frost (<0 °C) and less than 30% for heat (>35 °C) around flowering) would be shifted earlier by up to 2 and 1 month(s), respectively, in 2050. A short-season variety would require a shift in target sowing window 2-fold greater than long- and medium-season varieties by 2050 (8 vs. 4 days on average across locations and scenarios, respectively), but would suffer a lesser decrease in the length of the vegetative period (4 vs. 7 days). Overall, warmer winters would shorten the wheat season by up to 6 weeks, especially during preflowering. This faster crop cycle is associated with a reduced time for resource acquisition, and potential yield loss. As far as favourable rain and modern equipment would allow, early sowing and longer season varieties (i.e. in current climate) would be the best strategies to adapt to future climates.

15.
Plant Phenomics ; 2022: 9768253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935677

RESUMO

High-throughput phenotyping has become the frontier to accelerate breeding through linking genetics to crop growth estimation, which requires accurate estimation of leaf area index (LAI). This study developed a hybrid method to train the random forest regression (RFR) models with synthetic datasets generated by a radiative transfer model to estimate LAI from UAV-based multispectral images. The RFR models were evaluated on both (i) subsets from the synthetic datasets and (ii) observed data from two field experiments (i.e., Exp16, Exp19). Given the parameter ranges and soil reflectance are well calibrated in synthetic training data, RFR models can accurately predict LAI from canopy reflectance captured in field conditions, with systematic overestimation for LAI<2 due to background effect, which can be addressed by applying background correction on original reflectance map based on vegetation-background classification. Overall, RFR models achieved accurate LAI prediction from background-corrected reflectance for Exp16 (correlation coefficient (r) of 0.95, determination coefficient (R 2) of 0.90~0.91, root mean squared error (RMSE) of 0.36~0.40 m2 m-2, relative root mean squared error (RRMSE) of 25~28%) and less accurate for Exp19 (r =0.80~0.83, R 2 = 0.63~0.69, RMSE of 0.84~0.86 m2 m-2, RRMSE of 30~31%). Additionally, RFR models correctly captured spatiotemporal variation of observed LAI as well as identified variations for different growing stages and treatments in terms of genotypes and management practices (i.e., planting density, irrigation, and fertilization) for two experiments. The developed hybrid method allows rapid, accurate, nondestructive phenotyping of the dynamics of LAI during vegetative growth to facilitate assessments of growth rate including in breeding program assessments.

16.
Front Plant Sci ; 10: 1540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31867027

RESUMO

Genotype by environment interaction (G×E) for the target trait, e.g. yield, is an emerging property of agricultural systems and results from the interplay between a hierarchy of secondary traits involving the capture and allocation of environmental resources during the growing season. This hierarchy of secondary traits ranges from basic traits that correspond to response mechanisms/sensitivities, to intermediate traits that integrate a larger number of processes over time and therefore show a larger amount of G×E. Traits underlying yield differ in their contribution to adaptation across environmental conditions and have different levels of G×E. Here, we provide a framework to study the performance of genotype to phenotype (G2P) modeling approaches. We generate and analyze response surfaces, or adaptation landscapes, for yield and yield related traits, emphasizing the organization of the traits in a hierarchy and their development and interactions over time. We use the crop growth model APSIM-wheat with genotype-dependent parameters as a tool to simulate non-linear trait responses over time with complex trait dependencies and apply it to wheat crops in Australia. For biological realism, APSIM parameters were given a genetic basis of 300 QTLs sampled from a gamma distribution whose shape and rate parameters were estimated from real wheat data. In the simulations, the hierarchical organization of the traits and their interactions over time cause G×E for yield even when underlying traits do not show G×E. Insight into how G×E arises during growth and development helps to improve the accuracy of phenotype predictions within and across environments and to optimize trial networks. We produced a tangible simulated adaptation landscape for yield that we first investigated for its biological credibility by statistical models for G×E that incorporate genotypic and environmental covariables. Subsequently, the simulated trait data were used to evaluate statistical genotype-to-phenotype models for multiple traits and environments and to characterize relationships between traits over time and across environments, as a way to identify traits that could be useful to select for specific adaptation. Designed appropriately, these types of simulated landscapes might also serve as a basis to train other, more deep learning methodologies in order to transfer such network models to real-world situations.

17.
Front Plant Sci ; 10: 1491, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31827479

RESUMO

Genomic prediction of complex traits, say yield, benefits from including information on correlated component traits. Statistical criteria to decide which yield components to consider in the prediction model include the heritability of the component traits and their genetic correlation with yield. Not all component traits are easy to measure. Therefore, it may be attractive to include proxies to yield components, where these proxies are measured in (high-throughput) phenotyping platforms during the growing season. Using the Agricultural Production Systems Simulator (APSIM)-wheat cropping systems model, we simulated phenotypes for a wheat diversity panel segregating for a set of physiological parameters regulating phenology, biomass partitioning, and the ability to capture environmental resources. The distribution of the additive quantitative trait locus effects regulating the APSIM physiological parameters approximated the same distribution of quantitative trait locus effects on real phenotypic data for yield and heading date. We use the crop growth model APSIM-wheat to simulate phenotypes in three Australian environments with contrasting water deficit patterns. The APSIM output contained the dynamics of biomass and canopy cover, plus yield at the end of the growing season. Each water deficit pattern triggered different adaptive mechanisms and the impact of component traits differed between drought scenarios. We evaluated multiple phenotyping schedules by adding plot and measurement error to the dynamics of biomass and canopy cover. We used these trait dynamics to fit parametric models and P-splines to extract parameters with a larger heritability than the phenotypes at individual time points. We used those parameters in multi-trait prediction models for final yield. The combined use of crop growth models and multi-trait genomic prediction models provides a procedure to assess the efficiency of phenotyping strategies and compare methods to model trait dynamics. It also allows us to quantify the impact of yield components on yield prediction accuracy even in different environment types. In scenarios with mild or no water stress, yield prediction accuracy benefitted from including biomass and green canopy cover parameters. The advantage of the multi-trait model was smaller for the early-drought scenario, due to the reduced correlation between the secondary and the target trait. Therefore, multi-trait genomic prediction models for yield require scenario-specific correlated traits.

18.
Plant Cell Environ ; 31(3): 378-91, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18088328

RESUMO

Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.


Assuntos
Produtos Agrícolas/metabolismo , Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Água/metabolismo , Zea mays/metabolismo , Transpiração Vegetal/fisiologia , Solo , Temperatura , Fatores de Tempo
19.
Ann Bot ; 101(8): 1139-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18218705

RESUMO

BACKGROUND AND AIMS: Light interception is a critical factor in the production of biomass. The study presented here describes a method used to take account of architectural changes over time in sunflower and to estimate absorbed light at the organ level. METHODS: The amount of photosynthetically active radiation absorbed by a plant is estimated on a daily or hourly basis through precise characterization of the light environment and three-dimensional virtual plants built using AMAP software. Several treatments are performed over four experiments and on two genotypes to test the model, quantify the contribution of different organs to light interception and evaluate the impact of heliotropism. KEY RESULTS: This approach is used to simulate the amount of light absorbed at organ and plant scales from crop emergence to maturity. Blades and capitula were the major contributors to light interception, whereas that by petioles and stem was negligible. Light regimen simulations showed that heliotropism decreased the cumulated light intercepted at the plant scale by close to 2.2% over one day. CONCLUSIONS: The approach is useful in characterizing the light environment of organs and the whole plant, especially for studies on heterogeneous canopies or for quantifying genotypic or environmental impacts on plant architecture, where conventional approaches are ineffective. This model paves the way to analyses of genotype-environment interactions and could help establish new selection criteria based on architectural improvement, enhancing plant light interception.


Assuntos
Simulação por Computador , Helianthus/crescimento & desenvolvimento , Luz , Fototropismo/efeitos da radiação , Biomassa , Genótipo , Helianthus/anatomia & histologia , Helianthus/genética , Imageamento Tridimensional/métodos , Modelos Biológicos
20.
Plant Methods ; 14: 77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181766

RESUMO

BACKGROUND: Wheat (Triticum aestivum L.) productivity is commonly limited by the availability of water. Increasing transpiration efficiency (biomass produced per unit of water used, TE) can potentially lead to increased grain yield in water-limited environments ('more crop per drop'). Currently, the ability to screen large populations for TE is limited by slow, low-throughput and/or expensive screening procedures. Here, we propose a low-cost, low-technology, rapid, and scalable method to screen for TE. The method uses a Pot-in-Bucket system that allows continuous watering of the pots and frequent monitoring of water use. To investigate the robustness of the method across environments, and to determine the shortest trial duration required to get accurate and repeatable TE estimates in wheat, plants from 11 genotypes varying in phenology were sown at three dates and grown for different durations in a polyhouse with partial environmental control. RESULTS: The method revealed significant genotypic variations in TE among the 11 studied wheat genotypes. Genotype rankings for TE were consistent when plants were harvested the same day, at the flag-leaf stage or later. For these harvests, genotype rankings were consistent across experiments despite changes in environmental conditions, such as evaporative demand. CONCLUSIONS: These results indicate that (1) the Pot-In-Bucket system is suitable to screen TE for breeding purposes in populations with varying phenology, (2) multiple short trials can be carried out within a season to allow increased throughput of genotypes for TE screening, and (3) root biomass measurement is not required to screen for TE, as whole-plant TE and shoot-only TE are highly correlated, at least in wheat. The method is particularly relevant in developing countries where low-cost and relatively high labour input may be most applicable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA