RESUMO
BACKGROUND: Alzheimer's disease (AD) is an incurable and debilitating neurodegenerative disease that results in the progressive degeneration and death of nerve cells. Mutations in the APP gene, which encodes an amyloid precursor protein, is the strongest genetic risk factor for sporadic AD. METHODS AND RESULTS: We studied the APP gene (NM_000484.3: c.2045A > T; p.E682V) variants carried by members of a family suffering from AD using whole-exome sequencing and Sanger sequencing. CONCLUSION: In this study, we identified a new variant of the APP gene (NM_000484.3: c.2045A > T; p.E682V) in members of a family with AD. This provides potential targets for subsequent studies and information that can be used in genetic counselling.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Sequenciamento do Exoma , População do Leste Asiático , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Mutação/genéticaRESUMO
S100A4 is implicated in metabolic reprogramming across various cell types and is known to propel the progression of numerous diseases including allergies. Nonetheless, the influence of S100A4 on mast cell metabolic reprogramming during allergic disorders remains unexplored. Utilizing a mast cell line (C57), cells were treated with recombinant mouse S100A4 protein, with or without a PPAR-γ agonist (ROSI) or a RAGE inhibitor (FPS-ZM1). Subsequent assessments were conducted for mast cell activation and lipid metabolism. S100A4 induced mast cell activation and the release of inflammatory mediators, concurrently altering molecules involved in lipid metabolism and glycolysis over time. Furthermore, S100A4 stimulation resulted in cellular oxidative stress and mitochondrial dysfunction. Alterations in the levels of pivotal molecules within the RAGE/Src/JAK2/STAT3/PPAR-γ and NF-κB signaling pathways were noted during this stimulation, which were partially counteracted by ROSI or FPS-ZMI. Additionally, a trend of metabolic alterations was identified in patients with allergic asthma who exhibited elevated serum S100A4 levels. Correlation analysis unveiled a positive association between serum S100A4 and serum IgE, implying an indirect association with asthma. Collectively, our findings suggest that S100A4 regulates the lipid-metabolic reprogramming of mast cells, potentially via the RAGE and PPAR-γ-involved signaling pathway, offering a novel perspective in the disease management in patients with allergic disorders.