Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(25): e2306585, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38212281

RESUMO

Compact but precise feature-extracting ability is core to processing complex computational tasks in neuromorphic hardware. Physical reservoir computing (RC) offers a robust framework to map temporal data into a high-dimensional space using the time dynamics of a material system, such as a volatile memristor. However, conventional physical RC systems have limited dynamics for the given material properties, restricting the methods to increase their dimensionality. This study proposes an integrated temporal kernel composed of a 2-memristor and 1-capacitor (2M1C) using a W/HfO2/TiN memristor and TiN/ZrO2/Al2O3/ZrO2/TiN capacitor to achieve higher dimensionality and tunable dynamics. The kernel elements are carefully designed and fabricated into an integrated array, of which performances are evaluated under diverse conditions. By optimizing the time dynamics of the 2M1C kernel, each memristor simultaneously extracts complementary information from input signals. The MNIST benchmark digit classification task achieves a high accuracy of 94.3% with a (196×10) single-layer network. Analog input mapping ability is tested with a Mackey-Glass time series prediction, and the system records a normalized root mean square error of 0.04 with a 20×1 readout network, the smallest readout network ever used for Mackey-Glass prediction in RC. These performances demonstrate its high potential for efficient temporal data analysis.

2.
Mater Horiz ; 11(2): 499-509, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37966888

RESUMO

In-sensor reservoir computing (RC) is a promising technology to reduce power consumption and training costs of machine vision systems by processing optical signals temporally. This study demonstrates a high-dimensional in-sensor RC system with optoelectronic memristors to enhance the performance of the in-sensor RC system. Because optoelectronic memristors can respond to both optical and electrical stimuli, optical and electrical masks are proposed to improve the dimensionality and performance of the in-sensor RC system. An optical mask is employed to regulate the wavelength of light, while an electrical mask is used to control the initial conductance of zinc oxide optoelectronic memristors. The distinct characteristics of these two masks contribute to the representation of various distinguishable reservoir states, making it possible to implement diverse reservoir configurations with minimal correlation and to increase the dimensionality of the in-sensor RC system. Using the high-dimensional in-sensor RC system, handwritten digits are successfully classified with an accuracy of 94.1%. Furthermore, human action pattern recognition is achieved with a high accuracy of 99.4%. These high accuracies are achieved with the use of a single-layer readout network, which can significantly reduce the network size and training costs.

3.
Adv Mater ; 36(7): e2309314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37879643

RESUMO

Memristor-based physical reservoir computing (RC) is a robust framework for processing complex spatiotemporal data parallelly. However, conventional memristor-based reservoirs cannot capture the spatial relationship between the time-varying inputs due to the specific mapping scheme assigning one input signal to one memristor conductance. Here, a physical "graph reservoir" is introduced using a metal cell at the diagonal-crossbar array (mCBA) with dynamic self-rectifying memristors. Input and inverted input signals are applied to the word and bit lines of the mCBA, respectively, storing the correlation information between input signals in the memristors. In this way, the mCBA graph reservoirs can map the spatiotemporal correlation of the input data in a high-dimensional feature space. The high-dimensional mapping characteristics of the graph reservoir achieve notable results, including a normalized root-mean-square error of 0.09 in Mackey-Glass time series prediction, a 97.21% accuracy in MNIST recognition, and an 80.0% diagnostic accuracy in human connectome classification.

4.
Adv Mater ; 36(13): e2311040, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145578

RESUMO

Graphs adequately represent the enormous interconnections among numerous entities in big data, incurring high computational costs in analyzing them with conventional hardware. Physical graph representation (PGR) is an approach that replicates the graph within a physical system, allowing for efficient analysis. This study introduces a cross-wired crossbar array (cwCBA), uniquely connecting diagonal and non-diagonal components in a CBA by a cross-wiring process. The cross-wired diagonal cells enable cwCBA to achieve precise PGR and dynamic node state control. For this purpose, a cwCBA is fabricated using Pt/Ta2O5/HfO2/TiN (PTHT) memristor with high on/off and self-rectifying characteristics. The structural and device benefits of PTHT cwCBA for enhanced PGR precision are highlighted, and the practical efficacy is demonstrated for two applications. First, it executes a dynamic path-finding algorithm, identifying the shortest paths in a dynamic graph. PTHT cwCBA shows a more accurate inferred distance and ≈1/3800 lower processing complexity than the conventional method. Second, it analyzes the protein-protein interaction (PPI) networks containing self-interacting proteins, which possess intricate characteristics compared to typical graphs. The PPI prediction results exhibit an average of 30.5% and 21.3% improvement in area under the curve and F1-score, respectively, compared to existing algorithms.

5.
Adv Mater ; 36(36): e2403904, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39030848

RESUMO

Modern graph datasets with structural complexity and uncertainties due to incomplete information or data variability require advanced modeling techniques beyond conventional graph models. This study introduces a memristive crossbar array (CBA)-based probabilistic graph model (C-PGM) utilizing Cu0.3Te0.7/HfO2/Pt memristors, which exhibit probabilistic switching, self-rectifying, and memory characteristics. C-PGM addresses the complexities and uncertainties inherent in structural graph data across various domains, leveraging the probabilistic nature of memristors. C-PGM relies on the device-to-device variation across multiple memristive CBAs, overcoming the limitations of previous approaches that rely on sequential operations, which are slower and have a reliability concern due to repeated switching. This new approach enables the fast processing and massive implementation of probabilistic units at the expense of chip area. In this study, the hardware-based C-PGM feasibly expresses small-scale probabilistic graphs and shows minimal error in aggregate probability calculations. The probability calculation capabilities of C-PGM are applied to steady-state estimation and the PageRank algorithm, which is implemented on a simulated large-scale C-PGM. The C-PGM-based steady-state estimation and PageRank algorithm demonstrate comparable accuracy to conventional methods while significantly reducing computational costs.

6.
ACS Appl Mater Interfaces ; 16(13): 16462-16473, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513155

RESUMO

Higher functionality should be achieved within the device-level switching characteristics to secure the operational possibility of mixed-signal data processing within a memristive crossbar array. This work investigated electroforming-free Ta/HfO2/RuO2 resistive switching devices for digital- and analog-type applications through various structural and electrical analyses. The multiphase reset behavior, induced by the conducting filament modulation and oxygen vacancy generation (annihilation) in the HfO2 layer by interacting with the Ta (RuO2) electrode, was utilized for the switching mode change. Therefore, a single device can manifest stable binary switching between low and high resistance states for the digital mode and the precise 8-bit conductance modulation (256 resistance values) via an optimized pulse application for the analog mode. An in-depth analysis of the operation in different modes and comparing memristors with different electrode structures validate the proposed mechanism. The Ta/HfO2/RuO2 resistive switching device is feasible for a mixed-signal processable memristive array.

7.
Mater Horiz ; 11(18): 4493-4506, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38979717

RESUMO

In the big data era, the requirement for data clustering methods that can handle massive and heterogeneous datasets with varying distributions increases. This study proposes a clustering algorithm for data sets with heterogeneous density using a dual-mode memristor crossbar array for data clustering. The array consists of a Ta/HfO2/RuO2 memristor operating in analog or digital modes, controlled by the reset voltage. The digital mode shows low dispersion and a high resistance ratio, and the analog mode enables precise conductance tuning. The local outlier factor is introduced to handle a heterogeneous density, and the required Euclidean and K-distances within the given dataset are calculated in the analog mode in parallel. In the digital mode, clustering is performed based on the connectivity among data points after excluding the detected outliers. The proposed algorithm boasts linear time complexity for the entire process. Extensive evaluations of synthetic datasets demonstrate significant improvement over representative density-based algorithms, and the datasets with heterogeneous density are clustered feasibly. Finally, the proposed algorithm is used to cluster the single-molecule localization microscopy data, demonstrating the feasibility of the suggested method for real-world problems.

8.
ACS Appl Mater Interfaces ; 16(32): 42884-42893, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088726

RESUMO

This work demonstrates a physical reservoir using a back-end-of-line compatible thin-film transistor (TFT) with tin monoxide (SnO) as the channel material for neuromorphic computing. The electron trapping and time-dependent detrapping at the channel interface induce the SnO·TFT to exhibit fading memory and nonlinearity characteristics, the critical assets for physical reservoir computing. The three-terminal configuration of the TFT allows the generation of higher-dimensional reservoir states by simultaneously adjusting the bias conditions of the gate and drain terminals, surpassing the performances of typical two-terminal-based reservoirs such as memristors. The high-dimensional SnO TFT reservoir performs exceptionally in two benchmark tests, achieving a 94.1% accuracy in Modified National Institute of Standards and Technology handwritten number recognition and a normalized root-mean-square error of 0.089 in Mackey-Glass time-series prediction. Furthermore, it is suitable for vertical integration because its fabrication temperature is <250 °C, providing the benefit of achieving a high integration density.

9.
Adv Mater ; : e2410191, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39194394

RESUMO

Due to its area and energy efficiency, a memristive crossbar array (CBA) has been extensively studied for various combinatorial optimization applications, from network problems to circuit design. However, conventional approaches include heavily burdening software fine-tuning for the annealing process. Instead, this study introduces the "in-materia annealing" method, where the inter-layer interference of vertically stacked memristive CBA is utilized as an annealing method. When mapping combinatorial optimization problems into the configuration layer of the CBA, exponentially decaying annealing profiles are generated in nearby noise layers. Moreover, in-materia annealing profiles can be controlled by changing compliance current, read voltage, and read pulse width. Therefore, the annealing profiles can be arbitrarily controlled and generated individually for each cell, providing rich noise sources to solve the problem efficiently. Consequently, the experimental and simulation of Max-Cut and weighted Max-Cut problems achieve notable results with the minimum software burden.

10.
Nanoscale Adv ; 6(11): 2892-2902, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817425

RESUMO

Bayesian networks and Bayesian inference, which forecast uncertain causal relationships within a stochastic framework, are used in various artificial intelligence applications. However, implementing hardware circuits for the Bayesian inference has shortcomings regarding device performance and circuit complexity. This work proposed a Bayesian network and inference circuit using a Cu0.1Te0.9/HfO2/Pt volatile memristor, a probabilistic bit neuron that can control the probability of being 'true' or 'false.' Nodal probabilities within the network are feasibly sampled with low errors, even with the device's cycle-to-cycle variations. Furthermore, Bayesian inference of all conditional probabilities within the network is implemented with low power (<186 nW) and energy consumption (441.4 fJ), and a normalized mean squared error of ∼7.5 × 10-4 through division feedback logic with a variational learning rate to suppress the inherent variation of the memristor. The suggested memristor-based Bayesian network shows the potential to replace the conventional complementary metal oxide semiconductor-based Bayesian estimation method with power efficiency using a stochastic computing method.

11.
ACS Appl Mater Interfaces ; 16(12): 15032-15042, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491936

RESUMO

Nanodevice oscillators (nano-oscillators) have received considerable attention to implement in neuromorphic computing as hardware because they can significantly improve the device integration density and energy efficiency compared to complementary metal oxide semiconductor circuit-based oscillators. This work demonstrates vertically stackable nano-oscillators using an ovonic threshold switch (OTS) for high-density neuromorphic hardware. A vertically stackable Ge0.6Se0.4 OTS-oscillator (VOTS-OSC) is fabricated with a vertical crossbar array structure by growing Ge0.6Se0.4 film conformally on a contact hole structure using atomic layer deposition. The VOTS-OSC can be vertically integrated onto peripheral circuits without causing thermal damage because the fabrication temperature is <400 °C. The fabricated device exhibits oscillation characteristics, which can serve as leaky integrate-and-fire neurons in spiking neural networks (SNNs) and coupled oscillators in oscillatory neural networks (ONNs). For practical applications, pattern recognition and vertex coloring are demonstrated with SNNs and ONNs, respectively, using semiempirical simulations. This structure increases the oscillator integration density significantly, enabling complex tasks with a large number of oscillators. Moreover, it can enhance the computational speed of neural networks due to its rapid switching speed.

12.
Immunol Lett ; 122(1): 76-83, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19111575

RESUMO

To identify asthma-susceptibility genes, we did proteome analyses of the lung from control and ovalbumin-sensitized BALB/c mice. Among the 6 up-regulated proteins is alpha(1)-protease inhibitor (alpha(1)-PI) type 2, which is a member of the serine protease inhibitor superfamily of protease inhibitors that participate in a variety of physiological functions, including extracellular matrix remodeling and inflammation. The up-regulated expression of alpha(1)-PI type 2 was confirmed by real-time PCR. Then we examined mRNA expression of five members of the alpha(1)-PI family genes (alpha(1)-PI types 1-5) in several organs of BALB/c mice and found that in addition to the liver, all the organs tested also expressed different isoforms of alpha(1)-PI in a tissue-specific manner, albeit to a lesser extent compared with the liver. When a similar study was performed with C57BL/6 mice, which have been shown to be more susceptible to ovalbumin-induced asthma than BALB/c mice, a pair of remarkable differences between the mouse strains were revealed: (1) the magnitude of alpha(1)-PI type 2 mRNA in all the organs was much higher in BALB/c than in C57BL/6 mice and (2) alpha(1)-PI type 2 is the only isoform expressed in the lung of BALB/c, but not of C57BL/c mice. Using the antisense oligonucleotide technology to specifically down-regulate expression of alpha(1)-PI type 2, we demonstrated that pulmonary infiltration of eosinophils was significantly increased by intranasal administration of alpha(1)-PI type 2 antisense oligonucleotides in OVA-sensitized mice, suggesting that alpha(1)-PI type 2 may suppress the progress of asthma, probably by acting on neutrophil elastase, which can produce many of the pathological features of asthma.


Assuntos
Movimento Celular/genética , Eosinófilos/metabolismo , Eosinofilia Pulmonar/imunologia , alfa 1-Antitripsina/metabolismo , Administração Intranasal , Animais , Movimento Celular/imunologia , Eosinófilos/imunologia , Eosinófilos/patologia , Expressão Gênica , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Especificidade de Órgãos , Ovalbumina/imunologia , Proteômica , Eosinofilia Pulmonar/terapia , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA