Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(1): 65-76, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36306008

RESUMO

BACKGROUND: In rice, drought stress at reproductive stage drastically reduces yield, which in turn hampers farmer's efforts towards crop production. The majority of the rice varieties have resistance genes against several abiotic and biotic stresses. Therefore, the traditional landraces were studied to identify QTLs/candidate genes associated with drought tolerance. METHODS AND RESULTS: A high-density SNP-based genetic map was constructed using a Genotyping-by-sequencing (GBS) approach. The recombinant inbred lines (RILs) derived from crossing 'Banglami × Ranjit' were used for QTL analysis. A total map length of 1306.424 cM was constructed, which had an average inter-marker distance of 0.281 cM. The phenotypic evaluation of F6 and F7 RILs were performed under drought stress and control conditions. A total of 42 QTLs were identified under drought stress and control conditions for yield component traits explaining 1.95-13.36% of the total phenotypic variance (PVE). Among these, 19 QTLs were identified under drought stress conditions, whereas 23 QTLs were located under control conditions. A total of 4 QTLs explained a PVE ≥ 10% which are considered as the major QTLs. Moreover, bioinformatics analysis revealed the presence of 6 candidate genes, which showed differential expression under drought and control conditions. CONCLUSION: These QTLs/genes may be deployed for marker-assisted pyramiding to improve drought tolerance in the existing rice varieties.


Assuntos
Oryza , Oryza/genética , Secas , Genótipo , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas/genética , Fenótipo
2.
Mol Biol Rep ; 50(8): 6349-6359, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37314604

RESUMO

BACKGROUND: Drought stress is a major constraint for rice production worldwide. Reproductive stage drought stress (RSDS) leads to heavy yield losses in rice. The prospecting of new donor cultivars for identification and introgression of QTLs of major effect (Quantitative trait locus) for drought tolerance is crucial for the development of drought-resilient rice varieties. METHODS AND RESULTS: Our study aimed to map QTLs associated with yield and its related traits under RSDS conditions. A saturated linkage map was constructed using 3417 GBS (Genotyping by sequencing) derived SNP (Single nucleotide polymorphism) markers spanning 1924.136 cM map length with an average marker density of 0.56 cM, in the F3 mapping population raised via cross made between the traditional ahu rice cultivar, Koniahu (drought tolerant) and a high-yielding variety, Disang (drought susceptible). Using the Inclusive composite interval mapping approach, 35 genomic regions governing yield and related traits were identified in pooled data from 198 F3 and F4 segregating lines evaluated for two consecutive seasons under both RSDS and irrigated control conditions. Of the 35 QTLs, 23 QTLs were identified under RSDS with LOD (Logarithm of odds) values ranging between 2.50 and 7.83 and PVE (phenotypic variance explained) values of 2.95-12.42%. Two major QTLs were found to be linked to plant height (qPH1.29) and number of filled grains per panicle (qNOG5.12) under RSDS. Five putative QTLs for grain yield namely, qGY2.00, qGY5.05, qGY6.16, qGY9.19, and qGY10.20 were identified within drought conditions. Fourteen QTL regions having ≤ 10 Mb QTL interval size were further analysed for candidate gene identification and a total of 4146 genes were detected out of these 2263 (54.63%) genes were annotated to at least one gene ontology (GO) term. CONCLUSION: Several QTLs associated with grain yield and yield components and putative candidate genes were identified. The putative QTLs and candidate genes identified could be employed to augment drought resilience in rice after further validation through MAS strategies.


Assuntos
Oryza , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Oryza/genética , Secas , Fenótipo , Mapeamento Cromossômico/métodos , Grão Comestível/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA