Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Blood ; 141(26): 3166-3183, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37084385

RESUMO

Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , Proibitinas , Genes myc , RNA Mensageiro/genética
2.
Mol Pharmacol ; 105(4): 301-312, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38346795

RESUMO

Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this ß-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based ß-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Humanos , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL11/metabolismo , Transdução de Sinais , Ligantes , Ligação Competitiva
3.
J Biol Chem ; 299(10): 105218, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660910

RESUMO

Human G protein-coupled receptor 35 is regulated by agonist-mediated phosphorylation of a set of five phospho-acceptor amino acids within its C-terminal tail. Alteration of both Ser300 and Ser303 to alanine in the GPR35a isoform greatly reduces the ability of receptor agonists to promote interactions with arrestin adapter proteins. Here, we have integrated the use of cell lines genome edited to lack expression of combinations of G protein receptor kinases (GRKs), selective small molecule inhibitors of subsets of these kinases, and antisera able to specifically identify either human GPR35a or mouse GPR35 only when Ser300 and Ser303 (orce; the equivalent residues in mouse GPR35) have become phosphorylated to demonstrate that GRK5 and GRK6 cause agonist-dependent phosphorylation of these residues. Extensions of these studies demonstrated the importance of the GRK5/6-mediated phosphorylation of these amino acids for agonist-induced internalization of the receptor. Homology and predictive modeling of the interaction of human GPR35 with GRKs showed that the N terminus of GRK5 is likely to dock in the same methionine pocket on the intracellular face of GPR35 as the C terminus of the α5 helix of Gα13 and, that while this is also the case for GRK6, GRK2 and GRK3 are unable to do so effectively. These studies provide unique and wide-ranging insights into modes of regulation of GPR35, a receptor that is currently attracting considerable interest as a novel therapeutic target in diseases including ulcerative colitis.

4.
Cell Commun Signal ; 22(1): 43, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233929

RESUMO

BACKGROUND: The human CXC chemokine receptor 2 (CXCR2) is a G protein-coupled receptor (GPCR) interacting with multiple chemokines (i.e., CXC chemokine ligands CXCL1-3 and CXCL5-8). It is involved in inflammatory diseases as well as cancer. Consequently, much effort is put into the identification of CXCR2 targeting drugs. Fundamental research regarding CXCR2 signaling is mainly focused on CXCL8 (IL-8), which is the first and best described high-affinity ligand for CXCR2. Much less is known about CXCR2 activation induced by other chemokines and it remains to be determined to what extent potential ligand bias exists within this signaling system. This insight might be important to unlock new opportunities in therapeutic targeting of CXCR2. METHODS: Ligand binding was determined in a competition binding assay using labeled CXCL8. Activation of the ELR + chemokine-induced CXCR2 signaling pathways, including G protein activation, ß-arrestin1/2 recruitment, and receptor internalization, were quantified using NanoBRET-based techniques. Ligand bias within and between these pathways was subsequently investigated by ligand bias calculations, with CXCL8 as the reference CXCR2 ligand. Statistical significance was tested through a one-way ANOVA followed by Dunnett's multiple comparisons test. RESULTS: All chemokines (CXCL1-3 and CXCL5-8) were able to displace CXCL8 from CXCR2 with high affinity and activated the same panel of G protein subtypes (Gαi1, Gαi2, Gαi3, GαoA, GαoB, and Gα15) without any statistically significant ligand bias towards any one type of G protein. Compared to CXCL8, all other chemokines were less potent in ß-arrestin1 and -2 recruitment and receptor internalization while equivalently activating G proteins, indicating a G protein activation bias for CXCL1,-2,-3,-5,-6 and CXCL7. Lastly, with CXCL8 used as reference ligand, CXCL2 and CXCL6 showed ligand bias towards ß-arrestin1/2 recruitment compared to receptor internalization. CONCLUSION: This study presents an in-depth analysis of signaling bias upon CXCR2 stimulation by its chemokine ligands. Using CXCL8 as a reference ligand for bias index calculations, no ligand bias was observed between chemokines with respect to activation of separate G proteins subtypes or recruitment of ß-arrestin1/2 subtypes, respectively. However, compared to ß-arrestin recruitment and receptor internalization, CXCL1-3 and CXCL5-7 were biased towards G protein activation when CXCL8 was used as reference ligand.


Assuntos
Quimiocinas , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/metabolismo , beta-Arrestinas/metabolismo , Ligantes , Quimiocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo
5.
Acta Neuropsychiatr ; : 1-5, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37605951

RESUMO

OBJECTIVES: Cannabidiol (CBD) is a phytocannabinoid with great potential in clinical applications. The mechanism(s) of action of CBD require further investigation. Previous studies suggested that adenosine A2A receptors (A2ARs) could play a role in CBD-induced effects. Here, we evaluated the ability of CBD to modify the function of A2AR. METHODS: We used HEK-293T cells transfected with the cDNA encoding the human A2AR and Gαs protein, both modified to perform bioluminescence-based assays. We first assessed the effect of CBD on A2AR ligand binding using an A2AR NanoLuciferase sensor. Next, we evaluated whether CBD modified A2AR coupling to mini-Gαs proteins using the NanoBiT™ assay. Finally, we further assessed CBD effects on A2AR intrinsic activity by recording agonist-induced cAMP accumulation. RESULTS: CBD did not bind orthosterically to A2AR but reduced the coupling of A2AR to Gαs protein and the subsequent generation of cAMP. CONCLUSION: CBD negatively modulates A2AR functioning.

6.
Arterioscler Thromb Vasc Biol ; 41(2): 822-836, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33327748

RESUMO

OBJECTIVE: vMIP-II (viral macrophage inflammatory protein 2)/vCCL2 (viral chemotactic cytokine ligand 2) binds to multiple chemokine receptors, and vMIP-II-based positron emission tomography tracer (64Cu-DOTA-vMIP-II: vMIP-II tracer) accumulates at atherosclerotic lesions in mice. Given that it would be expected to react with multiple chemokine receptors on monocytes and macrophages, we wondered if its accumulation in atherosclerosis lesion-bearing mice might correlate with overall macrophage burden or, alternatively, the pace of monocyte recruitment. Approach and Results: We employed a mouse model of atherosclerosis regression involving adenoassociated virus 8 vector encoding murine Apoe (AAV-mApoE) treatment of Apoe-/- mice where the pace of monocyte recruitment slows before macrophage burden subsequently declines. Accumulation of 64Cu-DOTA-vMIP-II at Apoe-/- plaque sites was strong but declined with AAV-mApoE-induced decline in monocyte recruitment, before macrophage burden reduced. Monocyte depletion indicated that monocytes and macrophages themselves were not the only target of the 64Cu-DOTA-vMIP-II tracer. Using fluorescence-tagged vMIP-II tracer, competitive receptor blocking with CXCR4 antagonists, endothelial-specific Cre-mediated deletion of CXCR4, CXCR4-specific tracer 64Cu-DOTA-FC131, and CXCR4 staining during disease progression and regression, we show endothelial cell expression of CXCR4 is a key target of 64Cu-DOTA-vMIP-II imaging. Expression of CXCR4 was low in nonplaque areas but strongly detected on endothelium of progressing plaques, especially on proliferating endothelium, where vascular permeability was increased and monocyte recruitment was the strongest. CONCLUSIONS: Endothelial injury status of plaques is marked by CXCR4 expression and this injury correlates with the tendency of such plaques to recruit monocytes. Furthermore, our findings suggest positron emission tomography tracers that mark CXCR4 can be used translationally to monitor the state of plaque injury and monocyte recruitment.


Assuntos
Aorta Torácica/diagnóstico por imagem , Aterosclerose/diagnóstico por imagem , Quimiocinas/administração & dosagem , Endotélio Vascular/diagnóstico por imagem , Imagem Molecular , Monócitos/metabolismo , Compostos Organometálicos/administração & dosagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/administração & dosagem , Receptores CXCR4/metabolismo , Animais , Aorta Torácica/imunologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores/metabolismo , Linhagem Celular , Quimiocinas/farmacocinética , Modelos Animais de Doenças , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Injeções Intravenosas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Knockout para ApoE , Monócitos/imunologia , Monócitos/patologia , Compostos Organometálicos/farmacocinética , Placa Aterosclerótica , Valor Preditivo dos Testes , Compostos Radiofarmacêuticos/farmacocinética , Receptores CXCR4/genética
7.
Int J Mol Sci ; 22(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068829

RESUMO

Cassia abbreviata is widely used in Sub-Saharan Africa for treating many diseases, including HIV-1 infection. We have recently described the chemical structures of 28 compounds isolated from an alcoholic crude extract of barks and roots of C. abbreviata, and showed that six bioactive compounds inhibit HIV-1 infection. In the present study, we demonstrate that the six compounds block HIV-1 entry into cells: oleanolic acid, palmitic acid, taxifolin, piceatannol, guibourtinidol-(4α→8)-epiafzelechin, and a novel compound named as cassiabrevone. We report, for the first time, that guibourtinidol-(4α→8)-epiafzelechin and cassiabrevone inhibit HIV-1 entry (IC50 of 42.47 µM and 30.96 µM, respectively), as well as that piceatannol interacts with cellular membranes. Piceatannol inhibits HIV-1 infection in a dual-chamber assay mimicking the female genital tract, as well as HSV infection, emphasizing its potential as a microbicide. Structure-activity relationships (SAR) showed that pharmacophoric groups of piceatannol are strictly required to inhibit HIV-1 entry. By a ligand-based in silico study, we speculated that piceatannol and norartocarpetin may have a very similar mechanism of action and efficacy because of the highly comparable pharmacophoric and 3D space, while guibourtinidol-(4α→8)-epiafzelechin and cassiabrevone may display a different mechanism. We finally show that cassiabrevone plays a major role of the crude extract of CA by blocking the binding activity of HIV-1 gp120 and CD4.


Assuntos
Cassia/química , Infecções por HIV/tratamento farmacológico , Extratos Vegetais/farmacologia , Internalização do Vírus/efeitos dos fármacos , Catequina/farmacologia , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Ácido Oleanólico/farmacologia , Ácido Palmítico/farmacologia , Extratos Vegetais/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/virologia , Quercetina/análogos & derivados , Quercetina/farmacologia , Estilbenos/farmacologia
8.
Biochemistry ; 59(13): 1338-1350, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32182428

RESUMO

The chemokines CCL21 and CCL19, through binding of their cognate receptor CCR7, orchestrate lymph node homing of dendritic cells and naïve T cells. CCL21 differs from CCL19 via an unstructured 32 residue C-terminal domain. Previously described roles for the CCL21 C-terminus include GAG-binding, spatial localization to lymphatic vessels, and autoinhibitory modulation of CCR7-mediated chemotaxis. While truncation of the C-terminal tail induced chemical shift changes in the folded chemokine domain, the structural basis for its influence on CCL21 function remains largely unexplored. CCL21 concentration-dependent NMR chemical shifts revealed weak, nonphysiological self-association that mimics the truncation of the C-terminal tail. We generated a series of C-terminal truncation variants to dissect the C-terminus influence on CCL21 structure and receptor activation. Using NMR spectroscopy, we found that CCL21 residues 80-90 mediate contacts with the chemokine domain. In cell-based assays for CCR7 and ACKR4 activation, we also found that residues 92-100 reduced CCL21 potency in calcium flux, cAMP inhibition, and ß-arrestin recruitment. Taken together, these structure-function studies support a model wherein intramolecular interactions with specific residues of the flexible C-terminus stabilize a less active monomer conformation of the CCL21. We speculate that the autoinhibitory intramolecular contacts between the C-terminal tail and chemokine body are disrupted by GAG binding and/or interactions with the CCR7 receptor to ensure optimal functionality.


Assuntos
Quimiocina CCL21/química , Quimiocina CCL21/metabolismo , Motivos de Aminoácidos , Cálcio/metabolismo , Quimiocina CCL21/genética , Células Dendríticas/metabolismo , Humanos , Ligação Proteica , Receptores CCR/genética , Receptores CCR/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo
9.
Mol Pharmacol ; 91(6): 595-608, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28314853

RESUMO

G protein-coupled receptors are the most important drug targets for human diseases. An important number of them remain devoid of confirmed ligands. GPR27 is one of these orphan receptors, characterized by a high level of conservation among vertebrates and a predominant expression in the central nervous system. In addition, it has recently been linked to insulin secretion. However, the absence of endogenous or surrogate ligands for GPR27 complicates the examination of its biologic function. Our aim was to validate GPR27 signaling pathways, and therefore we sought to screen a diversity-oriented synthesis library to identify GPR27-specific surrogate agonists. To select an optimal screening assay, we investigated GPR27 ligand-independent activity. Both in G protein-mediated pathways and in ß-arrestin 2 recruitment, no ligand-independent activity could be measured. However, we observed a recruitment of ß-arrestin 2 to a GPR27V2 chimera in the presence of membrane-anchored G protein-coupled receptor kinase-2. Therefore, we optimized a firefly luciferase complementation assay to screen against this chimeric receptor. We identified two compounds [N-[4-(anilinocarbonyl)phenyl]-2,4-dichlorobenzamide (ChemBridge, San Diego, CA; ID5128535) and 2,4-dichloro-N-{4-[(1,3-thiazol-2-ylamino)sulfonyl]phenyl}benzamide (ChemBridge ID5217941)] sharing a N-phenyl-2,4-dichlorobenzamide scaffold, which were selective for GPR27 over its closely related family members GPR85 and GPR173. The specificity of the activity was confirmed with a NanoLuc Binary Technology ß-arrestin 2 assay, imaging of green fluorescent protein-tagged ß-arrestin 2, and PathHunter ß-arrestin 2 assay. Interestingly, no G protein activation was detected upon activation of GPR27 by these compounds. Our study provides the first selective surrogate agonists for the orphan GPR27.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 2/agonistas , beta-Arrestina 2/metabolismo , Sequência de Aminoácidos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Luciferases de Vaga-Lume , Receptores Acoplados a Proteínas G/genética , beta-Arrestina 2/genética
10.
Int J Mol Sci ; 18(7)2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28654001

RESUMO

House dust mite (HDM) protease allergens, through cleavages of critical surface proteins, drastically influence the initiation of the Th2 type immune responses. However, few human protein substrates for HDM proteases have been identified so far, mainly by applying time-consuming target-specific individual studies. Therefore, the identification of substrate repertoires for HDM proteases would represent an unprecedented key step toward a better understanding of the mechanism of HDM allergic response. In this study, phage display screenings using totally or partially randomized nonameric peptide substrate libraries were performed to characterize the extended substrate specificities (P5-P4') of the HDM proteases Der p 1, Der p 3 and Der p 6. The bioinformatics interface PoPS (Prediction of Protease Specificity) was then applied to define the proteolytic specificity profile of each protease and to predict new protein substrates within the human cell surface proteome, with a special focus on immune receptors. Specificity profiling showed that the nature of residues in P1 but also downstream the cleavage sites (P' positions) are important for effective cleavages by all three HDM proteases. Strikingly, Der p 1 and Der p 3 display partially overlapping specificities. Analysis with PoPS interface predicted 50 new targets for the HDM proteases, including 21 cell surface receptors whose extracellular domains are potentially cleaved by Der p 1, Der p 3 and/or Der p 6. Twelve protein substrate candidates were confirmed by phage ELISA (enzyme linked immunosorbent assay). This extensive study of the natural protein substrate specificities of the HDM protease allergens unveils new cell surface target receptors for a better understanding on the role of these proteases in the HDM allergic response and paves the way for the design of specific protease inhibitors for future anti-allergic treatments.


Assuntos
Antígenos de Dermatophagoides/metabolismo , Proteínas de Artrópodes/metabolismo , Cisteína Endopeptidases/metabolismo , Pyroglyphidae/metabolismo , Serina Endopeptidases/metabolismo , Animais , Técnicas de Visualização da Superfície Celular , Humanos , Hipersensibilidade/metabolismo , Proteólise , Proteoma/metabolismo , Proteômica , Receptores de Interleucina/metabolismo , Especificidade por Substrato
11.
Int J Mol Sci ; 18(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28531096

RESUMO

The major house dust mite allergen, Der p 1, is a papain-like cysteine protease expressed as an inactive precursor, proDer p 1, carrying an N-terminal propeptide with a unique structure. The maturation of the zymogen into an enzymatically-active form of Der p 1 is a multistep autocatalytic process initiated under acidic conditions through conformational changes of the propeptide, leading to the loss of its inhibitory ability and its subsequent gradual cleavage. The aims of this study were to characterize the residues present in the Der p 1 propeptide involved in the initiation of the zymogen maturation process, but also to assess the impact of acidic pH on the propeptide structure, the activity of Der p 1 and the fate of the propeptide. Using various complementary enzymatic and structural approaches, we demonstrated that a structural triad K17p-D51p-Y19p within the N-terminal domain of the propeptide is essential for its stabilization and the sensing of pH changes. Particularly, the protonation of D51p under acidic conditions unfolds the propeptide through disruption of the K17p-D51p salt bridge, reduces its inhibition capacity and unmasks the buried residues K17p and Y19p constituting the first maturation cleavage site of the zymogen. Our results also evidenced that this triad acts in a cooperative manner with other propeptide pH-responsive elements, including residues E56p and E80p, to promote the propeptide unfolding and/or to facilitate its proteolysis. Furthermore, we showed that acidic conditions modify Der p 1 proteolytic specificity and confirmed that the formation of the first intermediate represents the limiting step of the in vitro Der p 1 maturation process. Altogether, our results provide new insights into the early events of the mechanism of proDer p 1 maturation and identify a unique structural triad acting as a stabilizing and a pH-sensing regulatory element.


Assuntos
Antígenos de Dermatophagoides/química , Proteínas de Artrópodes/química , Cisteína Endopeptidases/química , Precursores Enzimáticos/química , Sequência de Aminoácidos , Antígenos de Dermatophagoides/genética , Proteínas de Artrópodes/genética , Cisteína Endopeptidases/genética , Dipeptídeos/química , Precursores Enzimáticos/genética , Concentração de Íons de Hidrogênio , Cinética , Mutação , Conformação Proteica , Desdobramento de Proteína , Proteólise , Tirosina/química
12.
Biochim Biophys Acta ; 1843(5): 1031-41, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24480462

RESUMO

The chemokine receptor CXCR4 interacts with a single endogenous chemokine, CXCL12, and regulates a wide variety of physiological and pathological processes including inflammation and metastasis development. CXCR4 also binds the HIV-1 envelope glycoprotein, gp120, resulting in viral entry into host cells. Therefore, CXCR4 and its ligands represent valuable drug targets. In this study, we investigated the inhibitory properties of synthetic peptides derived from CXCR4 extracellular loops (ECL1-X4, ECL2-X4 and ECL3-X4) towards HIV-1 infection and CXCL12-mediated receptor activation. Among these peptides, ECL1-X4 displayed anti-HIV-1 activity against X4, R5/X4 and R5 viruses (IC50=24 to 76µM) in cell viability assay without impairing physiological CXCR4-CXCL12 signalling. In contrast, ECL2-X4 only inhibited X4 and R5/X4 strains, interfering with HIV-entry into cells. At the same time, ECL2-X4 strongly and specifically interacted with CXCL12, blocking its binding to CXCR4 and its second receptor, CXCR7 (IC50=20 and 100µM). Further analysis using mutated and truncated peptides showed that ECL2 of CXCR4 forms multiple contacts with the gp120 protein and the N-terminus of CXCL12. Chemokine neutralisation was mainly driven by four aspartates and the C-terminal residues of ECL2-X4. These results demonstrate that ECL2 represents an important structural determinant in CXCR4 activation. We identified the putative site for the binding of CXCL12 N-terminus and provided new structural elements to explain the recognition of gp120 and dimeric CXCR4 ligands.


Assuntos
Quimiocina CXCL12/imunologia , Infecções por HIV/imunologia , Testes de Neutralização , Peptídeos/imunologia , Receptores CXCR4/imunologia , Sequência de Aminoácidos , HIV-1 , Humanos , Dados de Sequência Molecular
13.
Biochim Biophys Acta ; 1840(3): 1117-24, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24291687

RESUMO

BACKGROUND: The enzymatic activity of the four proteases found in the house dust mite Dermatophagoides pteronyssinus is involved in the pathogenesis of allergy. Our aim was to elucidate the activation cascade of their corresponding precursor forms and particularly to highlight the interconnection between proteases during this cascade. METHODS: The cleavage of the four peptides corresponding to the mite zymogen activation sites was studied on the basis of the Förster Resonance Energy Transfer method. The proDer p 6 zymogen was then produced in Pichia pastoris to elucidate its activation mechanism by mite proteases, especially Der p 1. The role of the propeptide in the inhibition of the enzymatic activity of Der p 6 was also examined. Finally, the Der p 1 and Der p 6 proteases were localised via immunolocalisation in D. pteronyssinus. RESULTS: All peptides were specifically cleaved by Der p 1, such as proDer p 6. The propeptide of proDer p 6 inhibited the proteolytic activity of Der p 6, but once cleaved, it was degraded by the protease. The Der p 1 and Der p 6 proteases were both localised to the midgut of the mite. CONCLUSIONS: Der p 1 in either its recombinant form or in the natural context of house dust mite extracts specifically cleaves all zymogens, thus establishing its role as a major activator of both mite cysteine and serine proteases. GENERAL SIGNIFICANCE: This finding suggests that Der p 1 may be valuable target against mites.


Assuntos
Alérgenos/metabolismo , Antígenos de Dermatophagoides/metabolismo , Proteínas de Artrópodes/metabolismo , Cisteína Endopeptidases/metabolismo , Dermatophagoides pteronyssinus/imunologia , Serina Endopeptidases/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Dermatophagoides/análise , Proteínas de Artrópodes/análise , Cisteína Endopeptidases/análise , Ativação Enzimática , Precursores Enzimáticos/metabolismo , Dados de Sequência Molecular , Proteólise , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/análise
14.
Biochem J ; 450(3): 477-86, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23289540

RESUMO

MßL (metallo-ß-lactamase) enzymes are usually produced by multi-resistant Gram-negative bacterial strains and have spread worldwide. An approach on the basis of phage display was used to select single-domain antibody fragments (VHHs, also called nanobodies) that would inhibit the clinically relevant VIM (Verona integron-encoded MßL)-4 MßL. Out of more than 50 selected nanobodies, only the NbVIM_38 nanobody inhibited VIM-4. The paratope, inhibition mechanism and epitope of the NbVIM_38 nanobody were then characterized. An alanine scan of the NbVIM_38 paratope showed that its binding was driven by hydrophobic amino acids. The inhibitory concentration was in the micromolar range for all ß-lactams tested. In addition, the inhibition was found to follow a mixed hyperbolic profile with a predominantly uncompetitive component. Moreover, substrate inhibition was recorded only after nanobody binding. These kinetic data are indicative of a binding site that is distant from the active site. This finding was confirmed by epitope mapping analysis that was performed using peptides, and which identified two stretches of amino acids in the L6 loop and at the end of the α2 helix. Because this binding site is distant from the active site and alters both the substrate binding and catalytic properties of VIM-4, this nanobody can be considered as an allosteric inhibitor.


Assuntos
Anticorpos de Domínio Único/farmacologia , Inibidores de beta-Lactamases , Regulação Alostérica/fisiologia , Sequência de Aminoácidos , Animais , Camelídeos Americanos/imunologia , Camelus/imunologia , Domínio Catalítico , Inibidores Enzimáticos/farmacologia , Mapeamento de Epitopos , Epitopos/química , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , beta-Lactamases/química , beta-Lactamases/imunologia
16.
Biosensors (Basel) ; 14(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534251

RESUMO

The human CC chemokine receptor 7 (CCR7) is activated by two natural ligands, CC chemokine ligand 19 (CCL19) and 21 (CCL21). The CCL19-CCL21-CCR7 axis has been extensively studied in vitro, but there is still debate over whether CCL21 is an overall weaker agonist or if the axis displays biased signalling. In this study, we performed a systematic analysis at the transducer level using NanoBRET-based methodologies in three commonly used cellular backgrounds to evaluate pathway and ligand preferences, as well as ligand bias and the influence of the cellular system thereon. We found that both CCL19 and CCL21 activated all cognate G proteins and some non-cognate couplings in a cell-type-dependent manner. Both ligands recruited ß-arrestin1 and 2, but the potency was strongly dependent on the cellular system. Overall, CCL19 and CCL21 showed largely conserved pathway preferences, but small differences were detected. However, these differences only consolidated in a weak ligand bias. Together, these data suggest that CCL19 and CCL21 share mostly overlapping, weakly biased, transducer profiles, which can be influenced by the cellular context.


Assuntos
Transdução de Sinais , Humanos , Receptores CCR7/metabolismo , Ligantes
17.
J Med Chem ; 67(16): 14553-14573, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39116445

RESUMO

ACKR3, an atypical chemokine receptor, has been associated with prothrombotic events and the development of cardiovascular events. We designed, synthesized, and evaluated a series of novel small molecule ACKR3 agonists. Extensive structure-activity relationship studies resulted in several promising agonists with potencies ranging from the low micromolar to nanomolar range, for example, 23 (EC50 = 111 nM, Emax = 95%) and 27 (EC50 = 69 nM, Emax = 82%) in the ß-arrestin-recruitment assay. These compounds are selective for ACKR3 versus ACKR2, CXCR3, and CXCR4. Several agonists were subjected to investigations of their P-selectin expression reduction in the flow cytometry experiments. In particular, compounds 23 and 27 showed the highest potency for platelet aggregation inhibition, up to 80% and 97%, respectively. The most promising compounds, especially 27, exhibited good solubility, metabolic stability, and no cytotoxicity, suggesting a potential tool compound for the treatment of platelet-mediated thrombosis.


Assuntos
Desenho de Fármacos , Inibidores da Agregação Plaquetária , Agregação Plaquetária , Receptores CXCR , Humanos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/química , Relação Estrutura-Atividade , Agregação Plaquetária/efeitos dos fármacos , Receptores CXCR/agonistas , Receptores CXCR/metabolismo , Animais , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/síntese química , Selectina-P/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo
18.
Biochem Pharmacol ; 227: 116457, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39098732

RESUMO

The chemokine receptor CXCR4 is involved in the development and migration of stem and immune cells but is also implicated in tumor progression and metastasis for a variety of cancers. Antagonizing ligand (CXCL12)-induced CXCR4 signaling is, therefore, of therapeutic interest. Currently, there are two small-molecule CXCR4 antagonists on the market for the mobilization of hematopoietic stem cells. Other molecules with improved potencies and safety profiles are being developed for different indications, including cancer. Moreover, multiple antagonistic nanobodies targeting CXCR4 displayed similar or better potencies as compared to the CXCR4-targeting molecule AMD3100 (Plerixafor), which was further enhanced through avid binding of bivalent derivatives. In this study, we aimed to compare the affinities of various multivalent nanobody formats which might be differently impacted by avidity. By fusion to a flexible GS-linker, Fc-region of human IgG1, different C4bp/CLR multimerization domains, or via site-directed conjugation to a trivalent linker scaffold, we generated different types of multivalent nanobodies with varying valencies ranging from bivalent to decavalent. Of these, C-terminal fusion, especially to human Fc, was most advantageous with a 2-log-fold and 3-log-fold increased potency in inhibiting CXCL12-mediated Gαi- or ß-arrestin recruitment, respectively. Overall, we describe strategies for generating multivalent and high-potency CXCR4 antagonistic nanobodies able to induce receptor clustering and conclude that fusion to an Fc-tail results in the highest avidity effect irrespective of the hinge linker.


Assuntos
Receptores CXCR4 , Anticorpos de Domínio Único , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/metabolismo , Receptores CXCR4/imunologia , Humanos , Anticorpos de Domínio Único/farmacologia , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Animais , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/antagonistas & inibidores , Quimiocina CXCL12/imunologia , Células HEK293 , Afinidade de Anticorpos
19.
ChemMedChem ; : e202400284, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932712

RESUMO

A conserved intracellular allosteric binding site (IABS) was recently identified at several G protein-coupled receptors (GPCRs). This target site allows the binding of allosteric modulators and enables a new mode of GPCR inhibition. Herein, we report the development of a NanoBRET-based assay platform based on the fluorescent ligand LT221 (5), to detect intracellular binding to CCR6 and CXCR1, two chemokine receptors that have been pursued as promising drug targets in inflammation and immuno-oncology. Our assay platform enables cell-free as well as cellular NanoBRET-based binding studies in a nonisotopic and straightforward manner. By combining this screening platform with a previously reported CXCR2 assay, we investigated CXCR1/CXCR2/CCR6 selectivity profiles for both known and novel squaramide analogues derived from navarixin, a known intracellular CXCR1/CXCR2 antagonist and phase II clinical candidate for the treatment of pulmonary diseases. By means of these studies we identified compound 10, a previously reported tert-butyl analogue of navarixin, as a low nanomolar intracellular CCR6 antagonist. Further, our assay platform clearly indicated intracellular binding of the CCR6 antagonist PF-07054894, currently evaluated in phase I clinical trials for the treatment of ulcerative colitis, thereby providing profound evidence for the existence and the pharmacological relevance of a druggable IABS at CCR6.

20.
Commun Biol ; 7(1): 802, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38956302

RESUMO

G protein-coupled receptors (GPCRs) are mainly regulated by GPCR kinase (GRK) phosphorylation and subsequent ß-arrestin recruitment. The ubiquitously expressed GRKs are classified into cytosolic GRK2/3 and membrane-tethered GRK5/6 subfamilies. GRK2/3 interact with activated G protein ßγ-subunits to translocate to the membrane. Yet, this need was not linked as a factor for bias, influencing the effectiveness of ß-arrestin-biased agonist creation. Using multiple approaches such as GRK2/3 mutants unable to interact with Gßγ, membrane-tethered GRKs and G protein inhibitors in GRK2/3/5/6 knockout cells, we show that G protein activation will precede GRK2/3-mediated ß-arrestin2 recruitment to activated receptors. This was independent of the source of free Gßγ and observable for Gs-, Gi- and Gq-coupled GPCRs. Thus, ß-arrestin interaction for GRK2/3-regulated receptors is inseparably connected with G protein activation. We outline a theoretical framework of how GRK dependence on free Gßγ can determine a GPCR's potential for biased agonism. Due to this inherent cellular mechanism for GRK2/3 recruitment and receptor phosphorylation, we anticipate generation of ß-arrestin-biased ligands to be mechanistically challenging for the subgroup of GPCRs exclusively regulated by GRK2/3, but achievable for GRK5/6-regulated receptors, that do not demand liberated Gßγ. Accordingly, GRK specificity of any GPCR is foundational for developing arrestin-biased ligands.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Humanos , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Fosforilação , Animais , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA