RESUMO
Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.
Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Oncogenes , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNARESUMO
To study the spatial interactions among cancer and non-cancer cells1, we here examined a cohort of 131 tumour sections from 78 cases across 6 cancer types by Visium spatial transcriptomics (ST). This was combined with 48 matched single-nucleus RNA sequencing samples and 22 matched co-detection by indexing (CODEX) samples. To describe tumour structures and habitats, we defined 'tumour microregions' as spatially distinct cancer cell clusters separated by stromal components. They varied in size and density among cancer types, with the largest microregions observed in metastatic samples. We further grouped microregions with shared genetic alterations into 'spatial subclones'. Thirty five tumour sections exhibited subclonal structures. Spatial subclones with distinct copy number variations and mutations displayed differential oncogenic activities. We identified increased metabolic activity at the centre and increased antigen presentation along the leading edges of microregions. We also observed variable T cell infiltrations within microregions and macrophages predominantly residing at tumour boundaries. We reconstructed 3D tumour structures by co-registering 48 serial ST sections from 16 samples, which provided insights into the spatial organization and heterogeneity of tumours. Additionally, using an unsupervised deep-learning algorithm and integrating ST and CODEX data, we identified both immune hot and cold neighbourhoods and enhanced immune exhaustion markers surrounding the 3D subclones. These findings contribute to the understanding of spatial tumour evolution through interactions with the local microenvironment in 2D and 3D space, providing valuable insights into tumour biology.
Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/imunologia , Variações do Número de Cópias de DNA/genética , Aprendizado Profundo , Transcriptoma , Mutação , Macrófagos/metabolismo , Macrófagos/imunologia , Apresentação de Antígeno , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Clonais/metabolismo , Células Clonais/patologiaRESUMO
Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.
Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Hipóxia Celular , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Metástase Neoplásica , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismoRESUMO
PURPOSE: High-grade glioma (HGG) is the most common and deadly malignant glioma of the central nervous system. The current standard of care includes surgical resection of the tumor, which can lead to functional and cognitive deficits. The aim of this study is to develop models capable of predicting functional outcomes in HGG patients before surgery, facilitating improved disease management and informed patient care. METHODS: Adult HGG patients (N = 102) from the neurosurgery brain tumor service at Washington University Medical Center were retrospectively recruited. All patients completed structural neuroimaging and resting state functional MRI prior to surgery. Demographics, measures of resting state network connectivity (FC), tumor location, and tumor volume were used to train a random forest classifier to predict functional outcomes based on Karnofsky Performance Status (KPS < 70, KPS ≥ 70). RESULTS: The models achieved a nested cross-validation accuracy of 94.1% and an AUC of 0.97 in classifying KPS. The strongest predictors identified by the model included FC between somatomotor, visual, auditory, and reward networks. Based on location, the relation of the tumor to dorsal attention, cingulo-opercular, and basal ganglia networks were strong predictors of KPS. Age was also a strong predictor. However, tumor volume was only a moderate predictor. CONCLUSION: The current work demonstrates the ability of machine learning to classify postoperative functional outcomes in HGG patients prior to surgery accurately. Our results suggest that both FC and the tumor's location in relation to specific networks can serve as reliable predictors of functional outcomes, leading to personalized therapeutic approaches tailored to individual patients.
Assuntos
Neoplasias Encefálicas , Glioma , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Masculino , Glioma/cirurgia , Glioma/diagnóstico por imagem , Glioma/patologia , Feminino , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Idoso , Descanso , Prognóstico , Gradação de Tumores , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Encéfalo/fisiopatologiaRESUMO
The NCCN Guidelines for Central Nervous System (CNS) Cancers focus on management of the following adult CNS cancers: glioma (WHO grade 1, WHO grade 2-3 oligodendroglioma [1p19q codeleted, IDH-mutant], WHO grade 2-4 IDH-mutant astrocytoma, WHO grade 4 glioblastoma), intracranial and spinal ependymomas, medulloblastoma, limited and extensive brain metastases, leptomeningeal metastases, non-AIDS-related primary CNS lymphomas, metastatic spine tumors, meningiomas, and primary spinal cord tumors. The information contained in the algorithms and principles of management sections in the NCCN Guidelines for CNS Cancers are designed to help clinicians navigate through the complex management of patients with CNS tumors. Several important principles guide surgical management and treatment with radiotherapy and systemic therapy for adults with brain tumors. The NCCN CNS Cancers Panel meets at least annually to review comments from reviewers within their institutions, examine relevant new data from publications and abstracts, and reevaluate and update their recommendations. These NCCN Guidelines Insights summarize the panel's most recent recommendations regarding molecular profiling of gliomas.
Assuntos
Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Adulto , Humanos , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Sistema Nervoso Central , MutaçãoRESUMO
PURPOSE: Glioblastoma (GBM) is the most common and aggressive malignant glioma, with an overall median survival of less than two years. The ability to predict survival before treatment in GBM patients would lead to improved disease management, clinical trial enrollment, and patient care. METHODS: GBM patients (N = 133, mean age 60.8 years, median survival 14.1 months, 57.9% male) were retrospectively recruited from the neurosurgery brain tumor service at Washington University Medical Center. All patients completed structural neuroimaging and resting state functional MRI (RS-fMRI) before surgery. Demographics, measures of cortical thickness (CT), and resting state functional network connectivity (FC) were used to train a deep neural network to classify patients based on survival (< 1y, 1-2y, >2y). Permutation feature importance identified the strongest predictors of survival based on the trained models. RESULTS: The models achieved a combined cross-validation and hold out accuracy of 90.6% in classifying survival (< 1y, 1-2y, >2y). The strongest demographic predictors were age at diagnosis and sex. The strongest CT predictors of survival included the superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, and middle temporal regions. The strongest FC features primarily involved dorsal and inferior somatomotor, visual, and cingulo-opercular networks. CONCLUSION: We demonstrate that machine learning can accurately classify survival in GBM patients based on multimodal neuroimaging before any surgical or medical intervention. These results were achieved without information regarding presentation symptoms, treatments, postsurgical outcomes, or tumor genomic information. Our results suggest GBMs have a global effect on the brain's structural and functional organization, which is predictive of survival.
Assuntos
Glioblastoma , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Aprendizado de MáquinaRESUMO
PURPOSE: To determine how participation in daily life is impacted during the first six months following a new cancer diagnosis and to identify risk factors for participation restrictions. Patient-reported outcomes (PROs) were used to suggest referrals to rehabilitation services. METHODS: Participants (n = 123) were adults (> 18 years) with the newly diagnosed primary brain, breast, colorectal, or lung cancer. PROs were collected at baseline (within 30 days of diagnosis/treatment initiation), two and five months post baseline. Daily life participation was assessed through the community participation indicators (CPI) (score range: 0-1) and patient-reported outcome measurement information system (PROMIS) ability to participate, (score range: 20-80; mean: 50, SD: 10). PROMIS-43 profile was also completed. Linear mixed-effect models with random intercept evaluated change in participation over time. RESULTS: The baseline total sample mean CPI score was 0.56; patients reported mildly impaired participation based on PROMIS scores (baseline: 46.19, 2-month follow-up: 44.81, 5 months: 44.84). However, no statistically significant changes in participation were observed over the study period. Risk factors for lower participation included receiving chemotherapy, lower physical function, higher anxiety and fatigue, and reduction in employment, p < 0.05. PROs indicated that roughly half of the participants may benefit from physical or occupational therapy or mental health support, but only 20-36% were referred by their medical team. CONCLUSION: People newly diagnosed with cancer experience impaired participation, but they are infrequently referred to supportive services such as rehabilitation. The use of PROs to assess participation, physical function, and mental health can promote access to supportive care services by identifying patients who may benefit from rehabilitation beyond those identified through routine clinical care.
Assuntos
Neoplasias , Qualidade de Vida , Adulto , Humanos , Estudos Longitudinais , Saúde Mental , Neoplasias/terapia , Ansiedade/etiologiaRESUMO
Glioblastoma is both the most common and lethal primary malignant brain tumor. Extensive multiplatform genomic characterization has provided a higher-resolution picture of the molecular alterations underlying this disease. These studies provide the emerging view that "glioblastoma" represents several histologically similar yet molecularly heterogeneous diseases, which influences taxonomic classification systems, prognosis, and therapeutic decisions.
Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/genética , Glioblastoma/classificação , Glioblastoma/genética , Neoplasias Encefálicas/patologia , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Genômica , Glioblastoma/patologia , Humanos , Neovascularização Patológica/genética , Transcrição GênicaRESUMO
To investigate the utilization and overall survival (OS) impact of concurrent chemotherapy in combination with radiation therapy (RT) for elderly glioblastoma (GBM) patients. Elderly patients (age >70) with supratentorial and nonmetastatic GBM who received RT of 20-75 Gy with concurrent single-agent chemotherapy (ChemoRT) or without (RT alone) during 2004-2012 were identified from the National Cancer Data Base (NCDB). The Cochran-Armitage test was used for trend analysis. Hazard ratios (HR) and 95% confidence intervals (CIs) were determined using Cox proportional hazards. Propensity score analysis was performed to reduce selection bias in treatment allocation. A total of 5252 patients were identified (RT alone: n = 1389; ChemoRT: n = 3863). There was increasing utilization of chemotherapy during this period (45-80%, P < .001). A similar trend was also observed for the subset of age >80 (25-68%, P < .001). ChemoRT was associated with significantly better OS than RT alone (HR 0.79, 95% CI 0.70-0.89, P < .001) on multivariate analysis, and similar OS benefit was demonstrated with 1202 pairs of propensity-matched patients (HR 0.79, 95% CI 0.73-0.86, P < .001). For the matched pair, the median OS was 5.8 months with ChemoRT and 5.0 months with RT alone; the 2-year OS rate was 9% with ChemoRT and 4% with RT alone (P < .001). Concurrent chemotherapy has been administered with RT for the majority of elderly GBM patients. Addition of chemotherapy to RT for elderly GBM patients is associated with significantly improve OS in routine clinical practice.
Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Idoso , Idoso de 80 Anos ou mais , Terapia Combinada , Bases de Dados Factuais , Feminino , Humanos , Masculino , Radioterapia , Sistema de Registros , Análise de Sobrevida , Resultado do TratamentoRESUMO
Targeting specific molecular alterations in glioblastoma (GBM) might more effectively kill tumor cells and increase survival. Vandetanib inhibits epidermal growth factor receptor and vascular endothelial growth factor receptor 2. Sirolimus inhibits mammalian target of rapamycin (mTOR), a member the phosphoinositide 3-Kinase signaling pathway. We sought to determine the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of vandetanib combined with sirolimus. Twenty-two patients (14 men; 8 women) with recurrent GBM enrolled. Median age and KPS were 52.5 years and 90 %, respectively. Patients were naive to anti-VEGF and anti-EGF therapy and mTOR inhibitors, and not on CYP3A4-inducing drugs. Vandetanib and sirolimus were orally administered on a continuous daily dosing schedule in escalating dose cohorts. Ten patients enrolled in the dose escalation phase. Twelve more enrolled at the MTD to explore progression-free survival at 6 months (PFS6) in a single arm, single stage phase II-type design. In total, 19 patients received at least one dose at the MTD, and 15 completed at least 1 cycle at MTD. MTD was 200 mg vandetanib plus 2 mg sirolimus. The DLT was elevated AST/SGOT. The most common toxicities were lymphopenia, fatigue, rash, and hypophosphatemia. For 19 patients who received at least one dose at the MTD, including seven from the phase I group, two had a partial response [10.5 %; 95 % CI (1, 33 %)] and PFS6 was 15.8 % [95 % CI (3.9, 34.9 %)]. Vandetanib and sirolimus can be safely co-administered on a continuous, daily dosing schedule.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto , Idoso , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Piperidinas/administração & dosagem , Piperidinas/efeitos adversos , Quinazolinas/administração & dosagem , Quinazolinas/efeitos adversos , Sirolimo/administração & dosagem , Sirolimo/efeitos adversosRESUMO
Aberrant activation of the canonical WNT/beta-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Although dysregulated beta-catenin activity drives colon tumorigenesis, further genetic perturbations are required to elaborate full malignant transformation. To identify genes that both modulate beta-catenin activity and are essential for colon cancer cell proliferation, we conducted two loss-of-function screens in human colon cancer cells and compared genes identified in these screens with an analysis of copy number alterations in colon cancer specimens. One of these genes, CDK8, which encodes a member of the mediator complex, is located at 13q12.13, a region of recurrent copy number gain in a substantial fraction of colon cancers. Here we show that the suppression of CDK8 expression inhibits proliferation in colon cancer cells characterized by high levels of CDK8 and beta-catenin hyperactivity. CDK8 kinase activity was necessary for beta-catenin-driven transformation and for expression of several beta-catenin transcriptional targets. Together these observations suggest that therapeutic interventions targeting CDK8 may confer a clinical benefit in beta-catenin-driven malignancies.
Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Regulação Neoplásica da Expressão Gênica , Oncogenes , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Neoplasias Colorretais/patologia , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/deficiência , Dosagem de Genes , Humanos , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Interferência de RNA , Transcrição GênicaRESUMO
Background: Burnout is a syndrome characterized by emotional exhaustion, depersonalization, and a reduced sense of accomplishment, which commonly arises from chronic workplace stress in the medical field. Given the higher risk of burnout in younger age groups reported in some studies, the Society for Neuro-Oncology (SNO) Young Investigator (YI) and Wellness Committees combined efforts to examine burnout in the SNO YI membership to better understand and address their needs. Methods: We distributed an anonymous online survey to SNO members in 2019. Only those meeting the definition of a YI were asked to complete the survey. The survey consisted of questions about personal and professional characteristics as well as the validated Maslach Burnout Inventory-Human Services Survey (MBI-HSS) questionnaire. Statistical analyses included descriptive statistics, univariate and multivariate analyses, and incorporation of previously defined burnout profiles. Results: Data were analyzed for 173 participants who self-identified as YI. Measures of burnout showed that YI members scored higher on emotional exhaustion and depersonalization compared to normative population but similar to those in a prior SNO general membership survey. With respect to burnout profiles, 30% of YI respondents classified as overextended and 15% as burnout. Organizational challenges were the most common contributors to stress. Conclusions: Similar to results from a previous survey completed by general SNO membership, the prevalence of burnout among neuro-oncology clinical and research YI is high, and is mainly characterized by overextension, warranting interventions at institutional and organizational levels.
RESUMO
PURPOSE: This phase 1/2 study aimed to evaluate the safety and preliminary efficacy of combining disulfiram and copper (DSF/Cu) with radiation therapy (RT) and temozolomide (TMZ) in patients with newly diagnosed glioblastoma (GBM). METHODS AND MATERIALS: Patients received standard RT and TMZ with DSF (250-375 mg/d) and Cu, followed by adjuvant TMZ plus DSF (500 mg/d) and Cu. Pharmacokinetic analyses determined drug concentrations in plasma and tumors using high-performance liquid chromatography-mass spectrometry. RESULTS: Thirty-three patients, with a median follow-up of 26.0 months, were treated, including 12 IDH-mutant, 9 NF1-mutant, 3 BRAF-mutant, and 9 other IDH-wild-type cases. In the phase 1 arm, 18 patients were treated; dose-limiting toxicity probabilities were 10% (95% CI, 3%-29%) at 250 mg/d and 21% (95% CI, 7%-42%) at 375 mg/d. The phase 2 arm treated 15 additional patients at 250 mg/d. No significant difference in overall survival or progression-free survival was noted between IDH- and NF1-mutant cohorts compared with institutional counterparts treated without DSF/Cu. However, extended remission occurred in 3 BRAF-mutant patients. Diethyl-dithiocarbamate-copper, the proposed active metabolite of DSF/Cu, was detected in plasma but not in tumors. CONCLUSIONS: The maximum tolerated dose of DSF with RT and TMZ is 375 mg/d. DSF/Cu showed limited clinical efficacy for most patients. However, promising efficacy was observed in BRAF-mutant GBM, warranting further investigation.
Assuntos
Neoplasias Encefálicas , Quimiorradioterapia , Cobre , Dissulfiram , Glioblastoma , Temozolomida , Humanos , Dissulfiram/uso terapêutico , Dissulfiram/farmacocinética , Dissulfiram/administração & dosagem , Glioblastoma/radioterapia , Glioblastoma/genética , Glioblastoma/mortalidade , Glioblastoma/terapia , Glioblastoma/tratamento farmacológico , Temozolomida/uso terapêutico , Temozolomida/farmacocinética , Temozolomida/administração & dosagem , Pessoa de Meia-Idade , Masculino , Feminino , Cobre/sangue , Cobre/uso terapêutico , Idoso , Adulto , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Quimiorradioterapia/métodos , Isocitrato Desidrogenase/genética , Intervalo Livre de Progressão , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacocinética , Proteínas Proto-Oncogênicas B-raf/genéticaRESUMO
Glioblastoma multiforme (GBM) is a fatal primary brain tumor harboring myriad genetic and epigenetic alterations. The recent multidimensional analysis of the GBM genome has provided a more complete view of the landscape of such alterations and their linked pathways. This effort has demonstrated that certain pathways are universally altered, but that the specific genetic events altered within each pathway can vary for each particular patient's tumor. With this atlas of genetic and epigenetic events, it now becomes feasible to assess how the patterns of mutations in a pathway influence response to drugs that are targeting such pathways. This issue is particularly important for GBM because, in contrast to other tumor types, molecularly targeted therapies have failed to alter overall survival substantially. Here, we combined functional genetic screens and comprehensive genomic analyses to identify CDK6 as a GBM oncogene that is required for proliferation and viability in a subset of GBM cell lines and tumors. Using an available small molecule targeting cyclin-dependent kinases (CDKs) 4 and 6, we sought to determine if the specific pattern of retinoblastoma pathway inactivation dictated the response to CDK4/6 inhibitor therapy. We showed that codeletion of CDKN2A and CDKN2C serves as a strong predictor of sensitivity to a selective inhibitor of CDK4/6. Thus, genome-informed drug sensitivity studies identify a subset of GBMs likely to respond to CDK4/6 inhibition. More generally, these observations demonstrate that the integration of genomic, functional and pharmacologic data can be exploited to inform the development of targeted therapy directed against specific cancer pathways.
Assuntos
Neoplasias do Sistema Nervoso Central/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Glioblastoma/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Camundongos , Transplante de Neoplasias , Piperazinas/farmacologia , Piridinas/farmacologiaRESUMO
Background: Myeloid-derived suppressor cells (MDSCs) are critical regulators of immunosuppression and radioresistance in glioblastoma (GBM). The primary objective of this pilot phase Ib study was to validate the on-target effect of tadalafil on inhibiting MDSCs in peripheral blood and its safety when combined with chemoradiotherapy in GBM patients. Methods: Patients with newly diagnosed IDH-wild-type GBM received radiation therapy (RT) and temozolomide (TMZ) combined with oral tadalafil for 2 months. A historical cohort of 12 GBM patients treated with RT and TMZ was used as the comparison group. The ratio of MDSCs, T cells, and cytokines at week 6 of RT compared to baseline were analyzed using flow cytometry. Progression-free survival (PFS) and overall survival (OS) were estimated by the Kaplan-Meier method. Results: Tadalafil was well tolerated with no dose-limiting toxicity among 16 evaluable patients. The tadalafil cohort had a significantly lower ratio of circulating MDSCs than the control: granulocytic-MDSCs (mean 0.78 versus 3.21, respectively, Pâ =â 0.01) and monocytic-MDSCs (1.02 versus 1.96, respectively, Pâ =â 0.006). Tadalafil increased the CD8 ratio compared to the control (1.99 versus 0.70, respectively, Pâ <â 0.001), especially the PD-1-CD8 T cells expressing Ki-67, CD38, HLA-DR, CD28, and granzyme B. Proinflammatory cytokine IL-1ß was also significantly increased after tadalafil compared to the control. The tadalafil cohort did not have significantly different PFS and OS than the historical control. Conclusions: Concurrent tadalafil is well tolerated during chemoradiotherapy for GBM. Tadalafil is associated with a reduction of peripheral MDSCs after chemoradiotherapy and increased CD8 T-cell proliferation and activation.
RESUMO
Tumors are comprised of a multitude of cell types spanning different microenvironments. Mass spectrometry imaging (MSI) has the potential to identify metabolic patterns within the tumor ecosystem and surrounding tissues, but conventional workflows have not yet fully integrated the breadth of experimental techniques in metabolomics. Here, we combine MSI, stable isotope labeling, and a spatial variant of Isotopologue Spectral Analysis to map distributions of metabolite abundances, nutrient contributions, and metabolic turnover fluxes across the brains of mice harboring GL261 glioma, a widely used model for glioblastoma. When integrated with MSI, the combination of ion mobility, desorption electrospray ionization, and matrix assisted laser desorption ionization reveals alterations in multiple anabolic pathways. De novo fatty acid synthesis flux is increased by approximately 3-fold in glioma relative to surrounding healthy tissue. Fatty acid elongation flux is elevated even higher at 8-fold relative to surrounding healthy tissue and highlights the importance of elongase activity in glioma.
Assuntos
Ecossistema , Glioblastoma , Animais , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Metabolômica/métodos , Glioblastoma/diagnóstico por imagem , Ácidos Graxos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Microambiente TumoralRESUMO
Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Transcriptoma , Epigênese Genética , Proteínas Supressoras de Tumor/genética , Regulação Neoplásica da Expressão GênicaRESUMO
PURPOSE: Patients with glioblastoma (GBM) are treated with radiotherapy (RT) and temozolomide (TMZ). These treatments may cause prolonged systemic lymphopenia, which itself is associated with poor outcomes. NT-I7 is a long-acting IL7 that expands CD4 and CD8 T-cell numbers in humans and mice. We tested whether NT-I7 prevents systemic lymphopenia and improves survival in mouse models of GBM. EXPERIMENTAL DESIGN: C57BL/6 mice bearing intracranial tumors (GL261 or CT2A) were treated with RT (1.8 Gy/day × 5 days), TMZ (33 mg/kg/day × 5 days), and/or NT-I7 (10 mg/kg on the final day of RT). We followed the mice for survival while serially analyzing levels of circulating T lymphocytes. We assessed regulatory T cells (Treg) and cytotoxic T lymphocytes in the tumor microenvironment, cervical lymph nodes, spleen, and thymus, and hematopoietic stem and progenitor cells in the bone marrow. RESULTS: GBM tumor-bearing mice treated with RT+NT-I7 increased T lymphocytes in the lymph nodes, thymus, and spleen, enhanced IFNγ production, and decreased Tregs in the tumor which was associated with a significant increase in survival. NT-I7 also enhanced central memory and effector memory CD8 T cells in lymphoid organs and tumor. Depleting CD8 T cells abrogated the effects of NT-I7. Furthermore, NT-I7 treatment decreased progenitor cells in the bone marrow. CONCLUSIONS: In orthotopic glioma-bearing mice, NT-I7 mitigates RT-related lymphopenia, increases cytotoxic CD8 T lymphocytes systemically and in the tumor, and improves survival. A phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Linfopenia , Animais , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Modelos Animais de Doenças , Glioma/patologia , Humanos , Fatores Imunológicos/farmacologia , Interleucina-7 , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão , Linfócitos T Citotóxicos/patologia , Temozolomida/farmacologia , Microambiente TumoralRESUMO
Background: Gliomas are the most common primary brain tumor in adults. Current treatments involve surgery, radiation, and temozolomide (TMZ) chemotherapy; however, prognosis remains poor and new approaches are required. Circadian medicine aims to maximize treatment efficacy and/or minimize toxicity by timed delivery of medications in accordance with the daily rhythms of the patient. We published a retrospective study showing greater anti-tumor efficacy for the morning, relative to the evening, administration of TMZ in patients with glioblastoma. We conducted this prospective randomized trial to determine the feasibility, and potential clinical impact, of TMZ chronotherapy in patients with gliomas (NCT02781792). Methods: Adult patients with gliomas (WHO grade II-IV) were enrolled prior to initiation of monthly TMZ therapy and were randomized to receive TMZ either in the morning (AM) before 10 am or in the evening (PM) after 8 pm. Pill diaries were recorded to measure compliance and FACT-Br quality of life (QoL) surveys were completed throughout treatment. Study compliance, adverse events (AE), and overall survival were compared between the two arms. Results: A total of 35 evaluable patients, including 21 with GBM, were analyzed (18 AM patients and 17 PM patients). Compliance data demonstrated the feasibility of timed TMZ dosing. There were no significant differences in AEs, QoL, or survival between the arms. Conclusions: Chronotherapy with TMZ is feasible. A larger study is needed to validate the effect of chronotherapy on clinical efficacy.
RESUMO
[This corrects the article DOI: 10.1093/noajnl/vdab164.].