Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Small ; 20(12): e2307011, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37946683

RESUMO

It is crucial to rationally design and synthesize atomic-scale transition metal-doped carbon catalysts with high electrocatalytic activity to achieve a high-efficient oxygen reduction reaction (ORR). Herein, an electrocatalyst comprised of Fe-Fe dual atom pairs and N-doped concave carbon are reported (N-CC@Fe DA) that achieves ultrahigh electrocatalytic ORR activity. The catalyst is prepared by a gaseous doping approach, with zeolitic imidazolate framework-8 (ZIF-8) as the carbon framework precursor and cyclopentadienyliron dicarbonyl dimer as the Fe-Fe atom pair precursor. The catalyst exhibits high cathodic ORR catalytic performance in an alkaline Zn/air battery and proton exchange membrane fuel cell (PEMFC), yielding peak power densities of 241 mW cm-2 and 724 mW cm-2, respectively, compared to 127 mW cm-2 and 1.20 W cm-2 with conventional Pt/C catalysts as cathodes. The presence of Fe atom pairs coordinate with N atoms is revealed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis, and Density Functional Theory (DFT) calculation results show that the Fe-Fe pair structure is beneficial for adsorbing oxygen molecules, activating the O─O bond, and desorbing OH* intermediates formed during oxygen reduction, resulting in a more efficient oxygen reaction. The findings may provide a new pathway for preparing ultra-high-performance doped carbon catalysts with Fe-Fe atom pair structures.

2.
Small ; 20(25): e2310491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38189624

RESUMO

Single-atom metal-doped M-N-C (M═Fe, Co, Mn, or Ni) catalysts exhibit excellent catalytic activity toward oxygen reduction reactions (ORR). However, their performance still has a large gap considering the demand for their practical applications. This study reports a high-performance dual single-atom doped carbon catalyst (HfCo-N-C), which is prepared by pyrolyzing Co and Hf co-doped ZIF-8 . Co and Hf are atomically dispersed in the carbon framework and coordinated with N to form Co-N4 and Hf-N4 active moieties. The synergetic effect between Co-N4 and Hf-N4 significantly enhance the catalytic activity and durability of the catalyst. In an acidic medium, the ORR half-wave potential (E1/2) of the catalyst is up to 0.82 V , which is much higher than that of the Co-N-C catalyst without Hf co-doping (0.80 V). The kinetic current density of the catalyst is up to 2.49 A cm-2 at 0.85 V , which is 1.74 times that of the Co-N-C catalyst without Hf co-doping. Moreover, the catalyst exhibits excellent cathodic performance in single proton exchange membrane fuel cells and Zn-air batteries. Furthermore, Hf co-doping can effectively suppress the formation of H2O2, resulting in significantly improved stability and durability.

3.
Nanotechnology ; 34(6)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36347034

RESUMO

Fe3+and 2-methylimidazole were selected to prepare tumor microenvironment targeted and regulated multifunctional drug carrier Fe-MOFs. The fact that Doxorubicin hydrochloride (DOX·HCl) release climbed 70% from 25% upon regulating the pH from 7.4 to 5.8 proved the pH responsive drug release of Fe-MOFs. Hydroxyl radicals (·OH) analysis proved that Fe-MOFs only generated hydroxyl radicals at pH 5.8, and dissolved oxygen performance showed the O2was produced during the process, which was expected to regulate hypoxia in tumor cells to increase anticancer effect. Cell viability experiments proved the selectivity of Fe-MOFs and the excellent performance of synergy therapy of DOX·HCl and hydroxyl radicals.In vivomagnetic resonance imaging experiments demonstrated excellent performance of positive images. All experiments showed that Fe-MOFs can be used for image-guided collaborative treatment to improve treatment efficiency and reduce side effects.


Assuntos
Estruturas Metalorgânicas , Microambiente Tumoral , Radical Hidroxila , Ferro , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Imageamento por Ressonância Magnética
4.
Nanotechnology ; 31(44): 445102, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32668418

RESUMO

In this work, a 'dual-key-and-lock' drug carrier was designed to respond to the tumor microenvironment (TME). A core-shell Fe-MOF@ZIF-8 was synthesized, with ZIF-8 as the shell (the first lock) to encapsulate catalase (CAT), and the Fe metal-organic framework (MOF) as the core (the second lock) to encapsulate the anticancer drug doxorubicin (DOX). Fe-MOF@ZIF-8 takes advantage of the TME-which includes a high concentration of H2O2, a weakly acidic environment and hypoxia-to achieve efficient cancer therapy. With the pH response, ZIF-8 and Fe-MOF are degraded in turn to release CAT and DOX, just like 'pH stimulation', as a key to open the two locks in turn. The released CAT reacts with the rich H2O2 in the tumor to produce O2 to regulate hypoxia, thereby improving the anticancer efficiency of the released DOX. The different cytotoxicity to L-02 cells and HeLa cells of Fe-MOF@ZIF-8 shows Fe-MOF@ZIF-8 is only harmful to cancer cells and is not harmful to normal cells. The reason is that the Fe2+/Fe3+ in Fe-MOF interact with the rich H2O2 in cancer cells to generate hydroxyl radicals (cOH), which is proved by the color of the solution of 3,3',5,5'-tetramethylbenzidine turning blue. After loading of the drug and CAT, Fe-MOF@ZIF-8 can release CAT, DOX and cOH in response to the TME, thus killing more HeLa cells. Therefore, synthesis of 'dual-key-and-lock' drug carriers responsive to the TME is a promising strategy for cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Imidazóis/química , Estruturas Metalorgânicas/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Células HeLa , Humanos , Peróxido de Hidrogênio/química , Ferro/química , Imageamento por Ressonância Magnética , Camundongos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos
5.
J Cell Sci ; 130(1): 269-277, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27149923

RESUMO

Epithelia provide a crucial protective barrier for our organs and are also the sites where the majority of carcinomas form. Most studies on epithelia and carcinomas use cell culture or organisms where high-resolution live imaging is inaccessible without invasive techniques. Here, we introduce the developing zebrafish epidermis as an excellent in vivo model system for studying a living epithelium. We developed tools to fluorescently tag specific epithelial cell types and express genes in a mosaic fashion using five Gal4 lines identified from an enhancer trap screen. When crossed to a variety of UAS effector lines, we can now track, ablate or monitor single cells at sub-cellular resolution. Using photo-cleavable morpholino oligonucleotides that target gal4, we can also express genes in a mosaic fashion at specific times during development. Together, this system provides an excellent in vivo alternative to tissue culture cells, without the intrinsic concerns of culture conditions or transformation, and enables the investigation of distinct cell types within living epithelial tissues.


Assuntos
Técnicas Citológicas/métodos , Células Epidérmicas , Peixe-Zebra/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Cruzamentos Genéticos , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Epiderme/efeitos dos fármacos , Epiderme/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Imageamento Tridimensional , Masculino , Morfolinos/farmacologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Small ; 15(4): e1803520, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30561824

RESUMO

Efficient, low-cost catalysts are desirable for the sluggish oxygen reduction reaction (ORR). Herein, UIO-66-NH2 -derived multi-element (Fe, S, N) co-doped porous carbon catalyst is reported, Fe/N/S-PC, with an octahedral morphology, a well-defined mesoporous structure, and highly dispersed doping elements, synthesized by a double-solvent diffusion-pyrolysis method (DSDPM). The morphology of the UIO-66-NH2 precursor is perfectly inherited by the derived carbon material, resulting in a high surface area, a well-defined mesoporous structure, and atomic-level dispersion of the doping elements. Fe/N/S-PC demonstrates outstanding catalytic activity and durability for the ORR in both alkaline and acidic solutions. In 0.1 m KOH, its half-potential reaches 0.87 V (vs reversible hydrogen electrode (RHE)), 30 mV more positive than that of a 20 wt% Pt/C catalyst. In 0.1 m HClO4 , it reaches 0.785 V (vs RHE), only 65 mV less than that of Pt/C. The catalyst also exhibits excellent performance in acidic hydrogen/oxygen proton exchange membrane fuel cells. A membrane electrode assembly (MEA) with the catalyst as the cathode reaches 700 mA·cm-2 at 0.6 V and a maximum power density of 553 mW·cm-2 , ranking it among the best MEAs with a nonprecious metal catalyst as the cathode.

7.
Angew Chem Int Ed Engl ; 58(9): 2622-2626, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30600864

RESUMO

A competitive complexation strategy has been developed to construct a novel electrocatalyst with Zn-Co atomic pairs coordinated on N doped carbon support (Zn/CoN-C). Such architecture offers enhanced binding ability of O2 , significantly elongates the O-O length (from 1.23 Što 1.42 Å), and thus facilitates the cleavage of O-O bond, showing a theoretical overpotential of 0.335 V during ORR process. As a result, the Zn/CoN-C catalyst exhibits outstanding ORR performance in both alkaline and acid conditions with a half-wave potential of 0.861 and 0.796 V respectively. The in situ XANES analysis suggests Co as the active center during the ORR. The assembled zinc-air battery with Zn/CoN-C as cathode catalyst presents a maximum power density of 230 mW cm-2 along with excellent operation durability. The excellent catalytic activity in acid is also verified by H2 /O2 fuel cell tests (peak power density of 705 mW cm-2 ).

8.
Nature ; 484(7395): 546-9, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22504183

RESUMO

For an epithelium to provide a protective barrier, it must maintain homeostatic cell numbers by matching the number of dividing cells with the number of dying cells. Although compensatory cell division can be triggered by dying cells, it is unknown how cell death might relieve overcrowding due to proliferation. When we trigger apoptosis in epithelia, dying cells are extruded to preserve a functional barrier. Extrusion occurs by cells destined to die signalling to surrounding epithelial cells to contract an actomyosin ring that squeezes the dying cell out. However, it is not clear what drives cell death during normal homeostasis. Here we show in human, canine and zebrafish cells that overcrowding due to proliferation and migration induces extrusion of live cells to control epithelial cell numbers. Extrusion of live cells occurs at sites where the highest crowding occurs in vivo and can be induced by experimentally overcrowding monolayers in vitro. Like apoptotic cell extrusion, live cell extrusion resulting from overcrowding also requires sphingosine 1-phosphate signalling and Rho-kinase-dependent myosin contraction, but is distinguished by signalling through stretch-activated channels. Moreover, disruption of a stretch-activated channel, Piezo1, in zebrafish prevents extrusion and leads to the formation of epithelial cell masses. Our findings reveal that during homeostatic turnover, growth and division of epithelial cells on a confined substratum cause overcrowding that leads to their extrusion and consequent death owing to the loss of survival factors. These results suggest that live cell extrusion could be a tumour-suppressive mechanism that prevents the accumulation of excess epithelial cells.


Assuntos
Células Epiteliais/citologia , Homeostase , Nadadeiras de Animais/anatomia & histologia , Nadadeiras de Animais/citologia , Nadadeiras de Animais/embriologia , Animais , Apoptose , Contagem de Células , Morte Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Colo/citologia , Cães , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Células Epidérmicas , Epiderme/embriologia , Humanos , Canais Iônicos/deficiência , Canais Iônicos/genética , Canais Iônicos/metabolismo , Lisofosfolipídeos/metabolismo , Modelos Biológicos , Neoplasias/patologia , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Dev Biol ; 416(2): 324-37, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27339294

RESUMO

The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1(UW1)) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1(UW1) mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis.


Assuntos
Proteínas do Olho/fisiologia , Laminina/fisiologia , Cristalino/embriologia , Retina/embriologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/embriologia , Animais , Movimento Celular , Polaridade Celular , Matriz Extracelular/fisiologia , Proteínas do Olho/genética , Adesões Focais , Laminina/deficiência , Laminina/genética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia Confocal , Organogênese , Retina/citologia , Células Ganglionares da Retina/citologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/embriologia , Imagem com Lapso de Tempo , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
10.
Dev Dyn ; 244(6): 785-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25694140

RESUMO

BACKGROUND: The application of the Gal4/UAS system to enhancer and gene trapping screens in zebrafish has greatly increased the ability to label and manipulate cell populations in multiple tissues, including the central nervous system (CNS). However the ability to select existing lines for specific applications has been limited by the lack of detailed expression analysis. RESULTS: We describe a Gal4 enhancer trap screen in which we used advanced image analysis, including three-dimensional confocal reconstructions and documentation of expression patterns at multiple developmental time points. In all, we have created and annotated 98 lines exhibiting a wide range of expression patterns, most of which include CNS expression. Expression was also observed in nonneural tissues such as muscle, skin epithelium, vasculature, and neural crest derivatives. All lines and data are publicly available from the Zebrafish International Research Center (ZIRC) from the Zebrafish Model Organism Database (ZFIN). CONCLUSIONS: Our detailed documentation of expression patterns, combined with the public availability of images and fish lines, provides a valuable resource for researchers wishing to study CNS development and function in zebrafish. Our data also suggest that many existing enhancer trap lines may have previously uncharacterized expression in multiple tissues and cell types.


Assuntos
Animais Geneticamente Modificados/genética , Sistema Nervoso Central/metabolismo , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Imageamento Tridimensional/métodos , Proteínas do Tecido Nervoso/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/embriologia , Sistema Nervoso Central/embriologia , Elementos de DNA Transponíveis , Bases de Dados Factuais , Genes Sintéticos , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Mutagênese Insercional , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Especificidade de Órgãos , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/biossíntese , Proteína Vermelha Fluorescente
11.
Water Sci Technol ; 74(10): 2505-2514, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27858807

RESUMO

Carbon as an adsorbent has been widely studied for wastewater treatment, but the regeneration of adsorbent has been scarcely reported. In this paper, an economical and environmental method was applied to regenerate carbon (XC-72). Results showed that both anhydrous ethanol and deionized water did not obtain optimal effect for the desorption of Acid Orange 7, Ponceau 2R and Rhodamine B, but the desorption effect was dramatically improved when anhydrous ethanol and deionized water were mixed in a certain volume ratio. In addition, the adsorption kinetics of the three dyes were investigated, which showed that the process of adsorption could be well represented by the pseudo-second-order model. For the study of competitive adsorption, this indicated that the interaction between adsorbent and adsorbate had something to do with electrostatic attraction.


Assuntos
Compostos Azo/química , Benzenossulfonatos/química , Carbono/química , Corantes/química , Rodaminas/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Reciclagem , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química
12.
J Neurosci ; 34(8): 2898-909, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24553931

RESUMO

Mirror movements are involuntary movements on one side of the body that occur simultaneously with intentional movements on the contralateral side. Humans with heterozygous mutations in the axon guidance receptor DCC display such mirror movements, where unilateral stimulation results in inappropriate bilateral motor output. Currently, it is unclear whether mirror movements are caused by incomplete midline crossing and reduced commissural connectivity of DCC-dependent descending pathways or by aberrant ectopic ipsilateral axonal projections of normally commissural neurons. Here, we show that in response to unilateral tactile stimuli, zebrafish dcc mutant larvae perform involuntary turns on the inappropriate body side. We show that these mirror movement-like deficits are associated with axonal guidance defects of two identified groups of commissural reticulospinal hindbrain neurons. Moreover, we demonstrate that in dcc mutants, axons of these identified neurons frequently fail to cross the midline and instead project ipsilaterally. Whereas laser ablation of these neurons in wild-type animals does not affect turning movements, their ablation in dcc mutants restores turning movements. Thus, our results demonstrate that in dcc mutants, turns on the inappropriate side of the body are caused by aberrant ipsilateral axonal projections, and suggest that aberrant ipsilateral connectivity of a very small number of descending axons is sufficient to induce incorrect movement patterns.


Assuntos
Genes DCC/genética , Genes DCC/fisiologia , Mutação/fisiologia , Neurônios/fisiologia , Reflexo de Sobressalto/fisiologia , Rombencéfalo/fisiologia , Peixe-Zebra/fisiologia , Animais , Axônios/fisiologia , Comportamento Animal/fisiologia , Mapeamento Cromossômico , DNA Complementar/biossíntese , DNA Complementar/genética , Imunofluorescência , Deleção de Genes , Genótipo , Interneurônios/fisiologia , Larva , Mutação de Sentido Incorreto/genética , Mutação de Sentido Incorreto/fisiologia , Vias Neurais/fisiologia , Fenótipo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Natação/fisiologia , Tato/fisiologia
13.
Development ; 139(14): 2604-13, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22696293

RESUMO

Successful axon pathfinding requires both correct patterning of tissues, which will later harbor axonal tracts, and precise localization of axon guidance cues along these tracts at the time of axon outgrowth. Retinal ganglion cell (RGC) axons grow towards the optic disc in the central retina, where they turn to exit the eye through the optic nerve. Normal patterning of the optic disc and stalk and the expression of guidance cues at this choice point are necessary for the exit of RGC axons out of the eye. Sonic hedgehog (Shh) has been implicated in both patterning of ocular tissue and direct guidance of RGC axons. Here, we examine the precise spatial and temporal requirement for Hedgehog (Hh) signaling for intraretinal axon pathfinding and show that Shh acts to pattern the optic stalk in zebrafish but does not guide RGC axons inside the eye directly. We further reveal an interaction between the Hh and chemokine pathways for axon guidance and show that cxcl12a functions downstream of Shh and depends on Shh for its expression at the optic disc. Together, our results support a model in which Shh acts in RGC axon pathfinding indirectly by regulating axon guidance cues at the optic disc through patterning of the optic stalk.


Assuntos
Axônios/metabolismo , Quimiocinas/metabolismo , Proteínas Hedgehog/metabolismo , Nervo Óptico/metabolismo , Retina/metabolismo , Animais , Proteínas Hedgehog/genética , Disco Óptico/citologia , Disco Óptico/metabolismo , Nervo Óptico/citologia , Retina/citologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Vias Visuais/citologia , Vias Visuais/metabolismo , Peixe-Zebra
14.
Development ; 139(2): 359-72, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22186726

RESUMO

Optic cup morphogenesis (OCM) generates the basic structure of the vertebrate eye. Although it is commonly depicted as a series of epithelial sheet folding events, this does not represent an empirically supported model. Here, we combine four-dimensional imaging with custom cell tracking software and photoactivatable fluorophore labeling to determine the cellular dynamics underlying OCM in zebrafish. Although cell division contributes to growth, we find it dispensable for eye formation. OCM depends instead on a complex set of cell movements coordinated between the prospective neural retina, retinal pigmented epithelium (RPE) and lens. Optic vesicle evagination persists for longer than expected; cells move in a pinwheel pattern during optic vesicle elongation and retinal precursors involute around the rim of the invaginating optic cup. We identify unanticipated movements, particularly of central and peripheral retina, RPE and lens. From cell tracking data, we generate retina, RPE and lens subdomain fate maps, which reveal novel adjacencies that might determine corresponding developmental signaling events. Finally, we find that similar movements also occur during chick eye morphogenesis, suggesting that the underlying choreography is conserved among vertebrates.


Assuntos
Movimento Celular/fisiologia , Olho/embriologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Análise de Variância , Animais , Ciclo Celular/fisiologia , Embrião de Galinha , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Cristalino/fisiologia , Retina/citologia , Retina/fisiologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/fisiologia , Fatores de Tempo
15.
Development ; 138(17): 3847-57, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21828101

RESUMO

The neural and vascular systems share common guidance cues that have direct and independent signaling effects on nerves and endothelial cells. Here, we show that zebrafish Netrin 1a directs Dcc-mediated axon guidance of motoneurons and that this neural guidance function is essential for lymphangiogenesis. Specifically, Netrin 1a secreted by the muscle pioneers at the horizontal myoseptum (HMS) is required for the sprouting of dcc-expressing rostral primary motoneuron (RoP) axons and neighboring axons along the HMS, adjacent to the future trajectory of the parachordal chain (PAC). These axons are required for the formation of the PAC and, subsequently, the thoracic duct. The failure to form the PAC in netrin 1a or dcc morphants is phenocopied by laser ablation of motoneurons and is rescued both by cellular transplants and overexpression of dcc mRNA. These results provide a definitive example of the requirement of axons in endothelial guidance leading to the parallel patterning of nerves and vessels in vivo.


Assuntos
Neurônios Motores/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Hibridização In Situ , Neurônios Motores/citologia , Fatores de Crescimento Neural/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
16.
Cureus ; 16(4): e59280, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38813273

RESUMO

This study aims to present a case of uterine adenomyosis accompanied by multiple hemorrhagic cerebral infarctions (CIs), summarize therapeutic experiences based on the literature review, and improve the clinical diagnosis and treatment of multiple hemorrhagic CIs. This paper describes a 46-year-old female with a four-year history of uterine adenomyosis complicated by multiple hemorrhagic CIs. During treatment, elevated levels of D-dimer, CA-125, and severe anemia were observed. Following internal medicine treatment targeting uterine adenomyosis and hemorrhagic CIs, the cerebral hemorrhage gradually resolved. Women presenting with multiple CIs, particularly hemorrhagic ones, should be evaluated for the presence of gynecological diseases. Treating gynecological conditions may aid in the management of multiple CIs.

17.
Water Res ; 261: 122005, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38968733

RESUMO

Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD.

18.
Acta Cytol ; : 1-9, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648759

RESUMO

INTRODUCTION: Digitizing cytology slides presents challenges because of their three-dimensional features and uneven cell distribution. While multi-Z-plane scan is a prevalent solution, its adoption in clinical digital cytopathology is hindered by prolonged scanning times, increased image file sizes, and the requirement for cytopathologists to review multiple Z-plane images. METHODS: This study presents heuristic scan as a novel solution, using an artificial intelligence (AI)-based approach specifically designed for cytology slide scanning as an alternative to the multi-Z-plane scan. Both the 21 Z-plane scan and the heuristic scan simulation methods were used on 52 urine cytology slides from three distinct cytopreparations (Cytospin, ThinPrep, and BD CytoRich™ [SurePath]), generating whole-slide images (WSIs) via the Leica Aperio AT2 digital scanner. The AI algorithm inferred the WSI from 21 Z-planes to quantitate the total number of suspicious for high-grade urothelial carcinoma or more severe cells (SHGUC+) cells. The heuristic scan simulation calculated the total number of SHGUC+ cells from the 21 Z-plane scan data. Performance metrics including SHGUC+ cell coverage rates (calculated by dividing the number of SHGUC+ cells identified in multiple Z-planes or heuristic scan simulation by the total SHGUC+ cells in the 21 Z-planes for each WSI), scanning time, and file size were analyzed to compare the performance of each scanning method. The heuristic scan's metrics were linearly estimated from the 21 Z-plane scan data. Additionally, AI-aided interpretations of WSIs with scant SHGUC+ cells followed The Paris System guidelines and were compared with original diagnoses. RESULTS: The heuristic scan achieved median SHGUC+ cell coverage rates similar to 5 Z-plane scans across three cytopreparations (0.78-0.91 vs. 0.75-0.88, p = 0.451-0.578). Notably, it substantially reduced both scanning time (137.2-635.0 s vs. 332.6-1,278.8 s, p < 0.05) and image file size (0.51-2.10 GB vs. 1.16-3.10 GB, p < 0.05). Importantly, the heuristic scan yielded higher rates of accurate AI-aided interpretations compared to the single Z-plane scan (62.5% vs. 37.5%). CONCLUSION: We demonstrated that the heuristic scan offers a cost-effective alternative to the conventional multi-Z-plane scan in digital cytopathology. It achieves comparable SHGUC+ cell capture rates while reducing both scanning time and image file size, promising to aid digital urine cytology interpretations with a higher accuracy rate compared to the conventional single (optimal) plane scan. Further studies are needed to assess the integration of this new technology into compatible digital scanners for practical cytology slide scanning.

19.
bioRxiv ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39026881

RESUMO

Here we present the Multisite Assembly of Gateway Induced Clones (MAGIC) system, which harnesses site-specific recombination-based cloning via Gateway technology for rapid, modular assembly of between 1 and 3 "Entry" vector components, all into a fourth, standard high copy "Destination" plasmid backbone. The MAGIC toolkit spans a range of in vitro and in vivo uses, from directing tunable gene expression, to driving simultaneous expression of microRNAs and fluorescent reporters, to enabling site-specific recombinase-dependent gene expression. All MAGIC system components are directly compatible with existing multisite gateway Tol2 systems currently used in zebrafish, as well as existing eukaryotic cell culture expression Destination plasmids, and available mammalian lentiviral and adenoviral Destination vectors, allowing rapid cross-species experimentation. Moreover, herein we describe novel vectors with flanking piggyBac transposon elements for stable genomic integration in vitro or in vivo when used with piggyBac transposase. Collectively, the MAGIC system facilitates transgenesis in cultured mammalian cells, electroporated mouse and chick embryos, as well as in injected zebrafish embryos, enabling the rapid generation of innovative DNA constructs for biological research due to a shared, common plasmid platform.

20.
J Pathol Inform ; 15: 100346, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125926

RESUMO

Background: Acquiring well-focused digital images of cytology slides with scanners can be challenging due to the 3-dimensional nature of the slides. This study evaluates performances of whole-slide images (WSIs) obtained from 2 different cytopreparations by 2 distinct scanners with 3 focus modes. Methods: Fourteen urine specimens were collected from patients with urothelial carcinoma. Each specimen was equally divided into 2 portions, prepared with Cytospin and ThinPrep methods and scanned for WSIs using Leica (Aperio AT2) and Hamamatsu (NanoZoomer S360) scanners, respectively. The scan settings included 3 focus modes (default, semi-auto, and manual) for single-layer scanning, along with a manual focus mode for 21 Z-layers scanning. Performance metrics were evaluated including scanning success rate, artificial intelligence (AI) algorithm-inferred atypical cell numbers and coverage rate (atypical cell numbers in single or multiple Z-layers divided by the total atypical cell numbers in 21 Z-layers), scanning time, and image file size. Results: The default mode had scanning success rates of 85.7% or 92.9%, depending on the scanner used. The semi-auto mode increased success to 92.9% or 100%, and manual even further to 100%. However, these changes did not affect the standardized median atypical cell numbers and coverage rates. The selection of scanners, cytopreparations, and Z-stacking influenced standardized median atypical cell numbers and coverage rates, scanning times, and image file sizes. Discussion: Both scanners showed satisfactory scanning. We recommend using semi-auto or manual focus modes to achieve a scanning success rate of up to 100%. Additionally, a minimum of 9-layer Z-stacking at 1 µm intervals is required to cover 80% of atypical cells. These advanced focus methods do not impact the number of atypical cells or their coverage rate. While Z-stacking enhances the AI algorithm's inferred quantity and coverage rates of atypical cells, it simultaneously results in longer scanning times and larger image file sizes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA