Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39005341

RESUMO

In efforts towards eliminating malaria, a discovery program was initiated to identify a novel antimalarial using KAF156 as a starting point. Following the most recent TCP/TPP guidelines, we have identified mCMQ069 with a predicted single oral dose for treatment (∼40-106 mg) and one-month chemoprevention (∼96-216 mg). We have improved unbound MPC and predicted human clearance by 18-fold and 10-fold respectively when compared to KAF156.

2.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38979188

RESUMO

Recent malaria drug discovery approaches have been extensively focused on the development of oral, smallmolecule inhibitors for disease treatment whereas parenteral routes of administration have been avoided due to limitations in deploying a shelf-stable injectable even though it could be dosed less frequently. However, an updated target candidate profile from Medicines for Malaria Venture (MMV) and stakeholders have advocated for long-acting injectable chemopreventive agents as an important interventive tool to improve malaria prevention. Here, we present strategies for the development of a long-acting, intramuscular, injectable atovaquone prophylactic therapy. We have generated three prodrug approaches that are contrasted by their differential physiochemical properties and pharmacokinetic profiles: mCBK068, a docosahexaenoic acid ester of atovaquone formulated in sesame oil, mCKX352, a heptanoic acid ester of atovaquone formulated as a solution in sesame oil, and mCBE161, an acetic acid ester of atovaquone formulated as an aqueous suspension. As a result, from a single 20 mg/kg intramuscular injection, mCKX352 and mCBE161 maintain blood plasma exposure of atovaquone above the minimal efficacious concentration for >70 days and >30 days, respectively, in cynomolgus monkeys. The differences in plasma exposure are reflective of the prodrug strategy, which imparts altered chemical properties that ultimately influence aqueous solubility and depot release kinetics. On the strength of the pharmacokinetic and safety profiles, mCBE161 is being advanced as a first-in-class clinical candidate for first-in-human trials.

3.
J Med Chem ; 67(4): 2369-2378, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38335279

RESUMO

There remains a need to develop novel SARS-CoV-2 therapeutic options that improve upon existing therapies by an increased robustness of response, fewer safety liabilities, and global-ready accessibility. Functionally critical viral main protease (Mpro, 3CLpro) of SARS-CoV-2 is an attractive target due to its homology within the coronaviral family, and lack thereof toward human proteases. In this disclosure, we outline the advent of a novel SARS-CoV-2 3CLpro inhibitor, CMX990, bearing an unprecedented trifluoromethoxymethyl ketone warhead. Compared with the marketed drug nirmatrelvir (combination with ritonavir = Paxlovid), CMX990 has distinctly differentiated potency (∼5× more potent in primary cells) and human in vitro clearance (>4× better microsomal clearance and >10× better hepatocyte clearance), with good in vitro-to-in vivo correlation. Based on its compelling preclinical profile and projected once or twice a day dosing supporting unboosted oral therapy in humans, CMX990 advanced to a Phase 1 clinical trial as an oral drug candidate for SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Diferenciação Celular , Revelação , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA