Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur Heart J ; 40(4): 383-391, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-29077881

RESUMO

Aims: Accumulation of reactive oxygen species (ROS) promotes vascular disease in obesity, but the underlying molecular mechanisms remain poorly understood. The adaptor p66Shc is emerging as a key molecule responsible for ROS generation and vascular damage. This study investigates whether epigenetic regulation of p66Shc contributes to obesity-related vascular disease. Methods and results: ROS-driven endothelial dysfunction was observed in visceral fat arteries (VFAs) isolated from obese subjects when compared with normal weight controls. Gene profiling of chromatin-modifying enzymes in VFA revealed a significant dysregulation of methyltransferase SUV39H1 (fold change, -6.9, P < 0.01), demethylase JMJD2C (fold change, 3.2, P < 0.01), and acetyltransferase SRC-1 (fold change, 5.8, P < 0.01) in obese vs. control VFA. These changes were associated with reduced di-(H3K9me2) and trimethylation (H3K9me3) as well as acetylation (H3K9ac) of histone 3 lysine 9 (H3K9) on p66Shc promoter. Reprogramming SUV39H1, JMJD2C, and SRC-1 in isolated endothelial cells as well as in aortas from obese mice (LepOb/Ob) suppressed p66Shc-derived ROS, restored nitric oxide levels, and rescued endothelial dysfunction. Consistently, in vivo editing of chromatin remodellers blunted obesity-related vascular p66Shc expression. We show that SUV39H1 is the upstream effector orchestrating JMJD2C/SRC-1 recruitment to p66Shc promoter. Indeed, SUV39H1 overexpression in obese mice erased H3K9-related changes on p66Shc promoter, while SUV39H1 genetic deletion in lean mice recapitulated obesity-induced H3K9 remodelling and p66Shc transcription. Conclusion: These results uncover a novel epigenetic mechanism underlying endothelial dysfunction in obesity. Targeting SUV39H1 may attenuate oxidative transcriptional programmes and thus prevent vascular disease in obese individuals.


Assuntos
Regulação da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Metiltransferases/genética , Coativador 1 de Receptor Nuclear/genética , Obesidade/genética , Estresse Oxidativo/fisiologia , Proteínas Repressoras/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Histona-Lisina N-Metiltransferase , Humanos , Histona Desmetilases com o Domínio Jumonji/biossíntese , Masculino , Metiltransferases/biossíntese , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Coativador 1 de Receptor Nuclear/biossíntese , Obesidade/metabolismo , Obesidade/patologia , RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/biossíntese , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/biossíntese , Transcrição Gênica , Vasodilatação
2.
Eur Heart J ; 36(13): 817-28, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24801072

RESUMO

AIM: Diabetes is a major driver of cardiovascular disease, but the underlying mechanisms remain elusive. Prolyl-isomerase Pin1 recognizes specific peptide bonds and modulates function of proteins altering cellular homoeostasis. The present study investigates Pin1 role in diabetes-induced vascular disease. METHODS AND RESULTS: In human aortic endothelial cells (HAECs) exposed to high glucose, up-regulation of Pin1-induced mitochondrial translocation of pro-oxidant adaptor p66(Shc) and subsequent organelle disruption. In this setting, Pin1 recognizes Ser-116 inhibitory phosphorylation of endothelial nitric oxide synthase (eNOS) leading to eNOS-caveolin-1 interaction and reduced NO availability. Pin1 also mediates hyperglycaemia-induced nuclear translocation of NF-κB p65, triggering VCAM-1, ICAM-1, and MCP-1 expression. Indeed, gene silencing of Pin1 in HAECs suppressed p66(Shc)-dependent ROS production, restored NO release and blunted NF-kB p65 nuclear translocation. Consistently, diabetic Pin1(-/-) mice were protected against mitochondrial oxidative stress, endothelial dysfunction, and vascular inflammation. Increased expression and activity of Pin1 were also found in peripheral blood monocytes isolated from diabetic patients when compared with age-matched healthy controls. Interestingly, enough, Pin1 up-regulation was associated with impaired flow-mediated dilation, increased urinary 8-iso-prostaglandin F2α and plasma levels of adhesion molecules. CONCLUSIONS: Pin1 drives diabetic vascular disease by causing mitochondrial oxidative stress, eNOS dysregulation as well as NF-kB-induced inflammation. These findings provide molecular insights for novel mechanism-based therapeutic strategies in patients with diabetes.


Assuntos
Angiopatias Diabéticas/prevenção & controle , Doenças Mitocondriais/prevenção & controle , Estresse Oxidativo/fisiologia , Peptidilprolil Isomerase/fisiologia , Análise de Variância , Animais , Aorta/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Quimiocina CCL2/metabolismo , Citocromos c/biossíntese , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Técnicas de Silenciamento de Genes , Glucose/farmacologia , Humanos , Hiperglicemia/fisiopatologia , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Peptidilprolil Isomerase de Interação com NIMA , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Regulação para Cima/fisiologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Vasculite/fisiopatologia
3.
J Cachexia Sarcopenia Muscle ; 8(6): 954-973, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29130633

RESUMO

BACKGROUND: Cancer cachexia is characterized by muscle depletion and exercise intolerance caused by an imbalance between protein synthesis and degradation and by impaired myogenesis. Myofibre metabolic efficiency is crucial so as to assure optimal muscle function. Some drugs are able to reprogram cell metabolism and, in some cases, to enhance metabolic efficiency. Based on these premises, we chose to investigate the ability of the metabolic modulator trimetazidine (TMZ) to counteract skeletal muscle dysfunctions and wasting occurring in cancer cachexia. METHODS: For this purpose, we used mice bearing the C26 colon carcinoma as a model of cancer cachexia. Mice received 5 mg/kg TMZ (i.p.) once a day for 12 consecutive days. A forelimb grip strength test was performed and tibialis anterior, and gastrocnemius muscles were excised for analysis. Ex vivo measurement of skeletal muscle contractile properties was also performed. RESULTS: Our data showed that TMZ induces some effects typically achieved through exercise, among which is grip strength increase, an enhanced fast-to slow myofibre phenotype shift, reduced glycaemia, PGC1α up-regulation, oxidative metabolism, and mitochondrial biogenesis. TMZ also partially restores the myofibre cross-sectional area in C26-bearing mice, while modulation of autophagy and apoptosis were excluded as mediators of TMZ effects. CONCLUSIONS: In conclusion, our data show that TMZ acts like an 'exercise mimetic' and is able to enhance some mechanisms of adaptation to stress in cancer cachexia. This makes the modulation of the metabolism, and in particular TMZ, a suitable candidate for a therapeutic rehabilitative protocol design, particularly considering that TMZ has already been approved for clinical use.


Assuntos
Caquexia/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Trimetazidina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biomarcadores , Caquexia/etiologia , Caquexia/patologia , Caquexia/fisiopatologia , Linhagem Celular , Modelos Animais de Doenças , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Força Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fenótipo
4.
Oncotarget ; 8(69): 113938-113956, 2017 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-29371959

RESUMO

Trimetazidine (TMZ) is a metabolic reprogramming agent able to partially inhibit mitochondrial free fatty acid ß-oxidation while enhancing glucose oxidation. Here we have found that the metabolic shift driven by TMZ enhances the myogenic potential of skeletal muscle progenitor cells leading to MyoD, Myogenin, Desmin and the slow isoforms of troponin C and I over-expression. Moreover, similarly to exercise, TMZ stimulates the phosphorylation of the AMP-activated protein kinase (AMPK) and up-regulates the peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), both of which are known to enhance the mitochondrial biogenesis necessary for myoblast differentiation. TMZ also induces autophagy which is required during myoblast differentiation and promotes myoblast alignment which allows cell fusion and myofiber formation. Finally, we found that intraperitoneally administered TMZ (5mg/kg) is able to stimulate myogenesis in vivo both in a mice model of cancer cachexia (C26 mice) and upon cardiotoxin damage. Collectively, our work demonstrates that TMZ enhances myoblast differentiation and promotes myogenesis, which might contribute recovering stem cell blunted regenerative capacity and counteracting muscle wasting, thanks to the formation of new myofibers; TMZ is already in use in humans as an anti-anginal drug and its repositioning might impact significantly on aging and regeneration-impaired disorders, including cancer cachexia, as well as have implications in regenerative medicine.

5.
Diabetes ; 66(9): 2472-2482, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28634176

RESUMO

Intensive glycemic control (IGC) targeting HbA1c fails to show an unequivocal reduction of macrovascular complications in type 2 diabetes (T2D); however, the underlying mechanisms remain elusive. Epigenetic changes are emerging as important mediators of cardiovascular damage and may play a role in this setting. This study investigated whether epigenetic regulation of the adaptor protein p66Shc, a key driver of mitochondrial oxidative stress, contributes to persistent vascular dysfunction in patients with T2D despite IGC. Thirty-nine patients with uncontrolled T2D (HbA1c >7.5%) and 24 age- and sex-matched healthy control subjects were consecutively enrolled. IGC was implemented for 6 months in patients with T2D to achieve a target HbA1c of ≤7.0%. Brachial artery flow-mediated dilation (FMD), urinary 8-isoprostaglandin F2α (8-isoPGF2α), and epigenetic regulation of p66Shc were assessed at baseline and follow-up. Continuous glucose monitoring was performed to determine the mean amplitude of glycemic excursion (MAGE) and postprandial incremental area under the curve (AUCpp). At baseline, patients with T2D showed impaired FMD, increased urinary 8-isoPGF2α, and p66Shc upregulation in circulating monocytes compared with control subjects. FMD, 8-isoPGF2α, and p66Shc expression were not affected by IGC. DNA hypomethylation and histone 3 acetylation were found on the p66Shc promoter of patients with T2D, and IGC did not change such adverse epigenetic remodeling. Persistent downregulation of methyltransferase DNMT3b and deacetylase SIRT1 may explain the observed p66Shc-related epigenetic changes. MAGE and AUCpp but not HbA1c were independently associated with the altered epigenetic profile on the p66Shc promoter. Hence, glucose fluctuations contribute to chromatin remodeling and may explain persistent vascular dysfunction in patients with T2D with target HbA1c levels.


Assuntos
Glicemia , Montagem e Desmontagem da Cromatina/fisiologia , Diabetes Mellitus Tipo 2/sangue , Endotélio Vascular/metabolismo , Hemoglobinas Glicadas/metabolismo , Estresse Oxidativo/fisiologia , Adulto , Estudos de Casos e Controles , Epigênese Genética , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Regulação para Cima
6.
Circ Cardiovasc Genet ; 8(1): 150-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25472959

RESUMO

BACKGROUND: Cellular studies showed that histone methyltransferase Set7 mediates high glucose-induced inflammation via epigenetic regulation of the transcription factor NF-kB. However, the link between Set7 and vascular dysfunction in patients with diabetes mellitus remains unknown. This study was designed to investigate whether Set7 contributes to vascular dysfunction in patients with type 2 diabetes mellitus (T2DM). METHODS AND RESULTS: Set7-driven epigenetic changes on NF-kB p65 promoter and expression of NF-kB-dependent genes, cyclooxygenase 2 and inducible endothelial nitric oxide synthase, were assessed in peripheral blood mononuclear cells isolated from 68 subjects (44 patients with T2DM and 24 age-matched controls). Brachial artery flow-mediated dilation, 24-hour urinary levels of 8-isoprostaglandin F2α, and plasma adhesion molecules, intercellular cell adhesion molecule-1 and monocyte chemoattractant protein-1, were also determined. Experiments in human aortic endothelial cells exposed to high glucose were performed to elucidate the mechanisms of Set7-driven inflammation and oxidative stress. Set7 expression increased in peripheral blood mononuclear cells from patients with T2DM when compared with controls. Patients with T2DM showed Set7-dependent monomethylation of lysine 4 of histone 3 on NF-kB p65 promoter. This epigenetic signature was associated with upregulation of NF-kB, subsequent transcription of oxidant/inflammatory genes, and increased plasma levels of intercellular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Interestingly, we found that Set7 expression significantly correlated with oxidative marker 8-isoprostaglandin F2α (r=0.38; P=0.01) and flow-mediated dilation (r=-0.34; P=0.04). In human aortic endothelial cells, silencing of Set7 prevented monomethylation of lysine 4 of histone 3 and abolished NF-kB-dependent oxidant and inflammatory signaling. CONCLUSIONS: Set7-induced epigenetic changes contribute to vascular dysfunction in patients with T2DM. Targeting this chromatin-modifying enzyme may represent a novel therapeutic approach to prevent atherosclerotic vascular disease in this setting.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Angiopatias Diabéticas/enzimologia , Células Endoteliais/enzimologia , Epigênese Genética , Histona-Lisina N-Metiltransferase/metabolismo , Adulto , Idoso , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Angiopatias Diabéticas/genética , Feminino , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
7.
Antioxid Redox Signal ; 21(1): 154-76, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24450966

RESUMO

SIGNIFICANCE: Skeletal muscle is a highly plastic tissue. Exercise evokes signaling pathways that strongly modify myofiber metabolism and physiological and contractile properties of skeletal muscle. Regular physical activity is beneficial for health and is highly recommended for the prevention of several chronic conditions. In this review, we have focused our attention on the pathways that are known to mediate physical training-induced plasticity. RECENT ADVANCES: An important role for redox signaling has recently been proposed in exercise-mediated muscle remodeling and peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) activation. Still more currently, autophagy has also been found to be involved in metabolic adaptation to exercise. CRITICAL ISSUES: Both redox signaling and autophagy are processes with ambivalent effects; they can be detrimental and beneficial, depending on their delicate balance. As such, understanding their role in the chain of events induced by exercise and leading to skeletal muscle remodeling is a very complicated matter. Moreover, the study of the signaling induced by exercise is made even more difficult by the fact that exercise can be performed with several different modalities, with this having different repercussions on adaptation. FUTURE DIRECTIONS: Unraveling the complexity of the molecular signaling triggered by exercise on skeletal muscle is crucial in order to define the therapeutic potentiality of physical training and to identify new pharmacological compounds that are able to reproduce some beneficial effects of exercise. In evaluating the effect of new "exercise mimetics," it will also be necessary to take into account the involvement of reactive oxygen species, reactive nitrogen species, and autophagy and their controversial effects.


Assuntos
Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Animais , Autofagia/fisiologia , Humanos , Oxirredução , PPAR gama/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA