RESUMO
PURPOSE: In about 10% of patients affected by Fanconi anemia (FA) the diagnosis is delayed until adulthood, and the presenting symptom in these "occult" FA cases is often a solid cancer and cancer treatment-related toxicity. Highly predictive clinical parameter(s) for diagnosing such an adult-onset cases are missing. METHODS: (1) Exome sequencing (ES), (2) Sanger sequencing of FANCA, (3) diepoxybutane (DEB)-induced chromosome breakage test. RESULTS: ES identified a pathogenic homozygous FANCA variant in a patient affected by Sertoli cell-only syndrome (SCOS) and in his azoospermic brother. Although they had no overt anemia, chromosomal breakage test revealed a reverse somatic mosaicism in the former and a typical FA picture in the latter. In 27 selected SCOS cases, 1 additional patient showing compound heterozygous pathogenic FANCA variants was identified with positive chromosomal breakage test. CONCLUSION: We report an extraordinarily high frequency of FA in a specific subgroup of azoospermic patients (7.1%). The screening for FANCA pathogenic variants in such patients has the potential to identify undiagnosed FA before the appearance of other severe clinical manifestations of the disease. The definition of this high-risk group for "occult" FA, based on specific testis phenotype with mild/borderline hematological alterations, is of unforeseen clinical relevance.
Assuntos
Azoospermia/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Anemia de Fanconi/genética , Síndrome de Células de Sertoli/genética , Adulto , Idade de Início , Azoospermia/sangue , Azoospermia/complicações , Azoospermia/patologia , Quebra Cromossômica , Exoma/genética , Anemia de Fanconi/sangue , Anemia de Fanconi/diagnóstico , Anemia de Fanconi/patologia , Feminino , Regulação da Expressão Gênica/genética , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Síndrome de Células de Sertoli/sangue , Síndrome de Células de Sertoli/complicações , Síndrome de Células de Sertoli/patologia , Testículo/metabolismo , Testículo/patologia , Sequenciamento do ExomaRESUMO
Male infertility is a multifactorial complex disease with highly heterogeneous phenotypic representation and in at least 15% of cases, this condition is related to known genetic disorders, including both chromosomal and single-gene alterations. In about 40% of primary testicular failure, the etiology remains unknown and a portion of them is likely to be caused by not yet identified genetic anomalies. During the last 10 years, the search for 'hidden' genetic factors was largely unsuccessful in identifying recurrent genetic factors with potential clinical application. The armamentarium of diagnostic tests has been implemented only by the screening for Y chromosome-linked gr/gr deletion in those populations for which consistent data with risk estimate are available. On the other hand, it is clearly demonstrated by both single nucleotide polymorphisms and comparative genomic hybridization arrays, that there is a rare variant burden (especially relevant concerning deletions) in men with impaired spermatogenesis. In the era of next generation sequencing (NGS), we expect to expand our diagnostic skills, since mutations in several hundred genes can potentially lead to infertility and each of them is likely responsible for only a small fraction of cases. In this regard, system biology, which allows revealing possible gene interactions and common biological pathways, will provide an informative tool for NGS data interpretation. Although these novel approaches will certainly help in discovering 'hidden' genetic factors, a more comprehensive picture of the etiopathogenesis of idiopathic male infertility will only be achieved by a parallel investigation of the complex world of gene environmental interaction and epigenetics.
Assuntos
Epigenômica , Infertilidade Masculina/genética , Espermatogênese/genética , Humanos , Masculino , Fatores de RiscoRESUMO
Modern society is witnessing a widespread tendency to postpone parenthood due to a number of socioeconomic factors. This ever-increasing trend relates to both women and men and raises many concerns about the risks and consequences lying beneath the natural process of aging. The negative influence of the advanced maternal age has been thoroughly demonstrated, while the paternal age has attracted comparatively less attention. A problematic issue of defining whether advanced paternal age can be considered an independent risk factor, not only for a man's fertility but also for the offspring's health, is represented by the difficulty, linked to reproductive studies, in characterizing the impact of maternal and paternal age, separately. Researchers are now trying to overcome this obstacle by directly analyzing the male germ cell, and emerging data prove this sperm-specific approach to be a valid tool for providing novel insights on the effects of aging on the spermatozoa and, thus, on the reproductive outcome of an aging male. The purpose of this chapter is to summarize most of what is known about the relationship between male aging and changes in the spermatozoa, giving special focus on the events occurring with age at the genomic level.
Assuntos
Envelhecimento/genética , Genoma Humano/fisiologia , Espermatozoides/metabolismo , Envelhecimento/metabolismo , Animais , Aberrações Cromossômicas , Dano ao DNA/fisiologia , Feminino , Humanos , Masculino , Idade PaternaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
The association between impaired spermatogenesis and TGCT has stimulated research on shared genetic factors. Y chromosome-linked partial AZFc deletions predispose to oligozoospermia and were also studied in TGCT patients with controversial results. In the largest study reporting the association between gr/gr deletion and TGCT, sperm parameters were unknown. Hence, it remains to be established whether this genetic defect truly represents a common genetic link between TGCT and impaired sperm production. Our aim was to explore the role of the following Y chromosome-linked factors in the predisposition to TGCT: (i) gr/gr deletion in subjects with known sperm parameters; (ii) other partial AZFc deletions and, for the first time, the role of partial AZFc duplications; (iii) DAZ gene dosage variation. 497 TGCT patients and 2030 controls from two Mediterranean populations with full semen/andrological characterization were analyzed through a series of molecular genetic techniques. Our most interesting finding concerns the gr/gr deletion and DAZ gene dosage variation (i.e., DAZ copy number is different from the reference sequence), both conferring TGCT susceptibility. In particular, the highest risk was observed when normozoospermic TGCT and normozoospermic controls were compared (OR = 3.7; 95% CI = 1.5-9.1; p = 0.006 for gr/gr deletion and OR = 1.8; 95% CI = 1.1-3.0; p = 0.013 for DAZ gene dosage alteration). We report in the largest European study population the predisposing effect of gr/gr deletion to TGCT as an independent risk factor from impaired spermatogenesis. Our finding implies regular tumour screening/follow-up in male family members of TGCT patients with gr/gr deletion and in infertile gr/gr deletion carriers.
Assuntos
Deleção Cromossômica , Cromossomos Humanos Y , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Embrionárias de Células Germinativas/genética , Espermatogênese/genética , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/genética , Estudos de Casos e Controles , Europa (Continente) , Deleção de Genes , Dosagem de Genes , Duplicação Gênica , Frequência do Gene , Rearranjo Gênico , Genótipo , Haplótipos , Humanos , Masculino , FenótipoRESUMO
Despite major advances in the treatment of metastatic colorectal cancer (mCRC), the survival rate remains very poor. This study aims at exploring the prognostic value of RAS-mutant allele fraction (MAF) in plasma in mCRC. Forty-seven plasma samples from 37 RAS-mutated patients with nonresectable metastases were tested for RAS in circulating tumor DNA using BEAMing before first- and/or second-line treatment. RAS MAF was correlated with several clinical parameters (number of metastatic sites, hepatic volume, carcinoembryonic antigen, CA19-9 levels, primary site location, and treatment line) and clinical outcome [progression-free survival (PFS) and overall survival (OS)]. An independent cohort of 32 patients from the CAPRI-GOIM trial was assessed for clinical outcome based on plasma baseline MAF. RAS MAF analysis at baseline revealed a significant correlation with longer OS [Hazard ratios (HR) = 3.514; P = 0.00066]. Patients with lower MAF also showed a tendency to longer PFS, although not statistically significant. Multivariate analysis showed RAS MAFs as an independent prognostic factor in both OS (HR = 2.73; P = 0.006) and first-line PFS (HR = 3.74; P = 0.049). Tumor response to treatment in patients with higher MAF was progression disease (P = 0.007). Patients with low MAFs at baseline in the CAPRI-GOIM group also showed better OS [HR = 3.84; 95% confidence intervals (CI) 1.5-9.6; P = 0.004] and better PFS (HR = 2.5; 95% CI: 1.07-5.62; P = 0.033). This minimally invasive test may help in adding an independent factor to better estimate outcomes before initiating treatment. Further prospective studies using MAF as a stratification factor could further validate its utility in clinical practice.
Assuntos
Alelos , DNA Tumoral Circulante , Neoplasias Colorretais , Mutação , Proteína Oncogênica p21(ras)/genética , Idoso , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Estudos Retrospectivos , Taxa de SobrevidaRESUMO
PURPOSE OF REVIEW: Genetic disorders can be identified in about 15% of cases of male infertility. With the widespread application of assisted reproductive technology, infertile patients are now given the possibility of having their biological children; however, a genetic risk exists for assisted reproductive technology-born offspring, implying the necessity for future parents to be appropriately informed about potential consequences. In this review, we provide current recommendations on clinical genetic testing and genetic counselling. RECENT FINDINGS: New insights are presented concerning Klinefelter syndrome, X and Y chromosome-linked deletions, monogenic diseases and pharmacogenetics. SUMMARY: As for Klinefelter patients, novel preventive measures to preserve fertility have been proposed although they are not yet applicable in the routine setting. Y-chromosome deletions have both diagnostic and prognostic values and their testing is advised to be performed according to the new European Academy of Andrology/European Molecular Genetics Quality Network guidelines. Among monogenic diseases, major advances have been obtained in the identification of novel genes of hypogonadotrophic hypogonadism. Pharmacogenetic approaches of hormonal treatment in infertile men with normal values of follicle-stimulating hormone (FSH) are promising and based on FSHR and FSHB polymorphisms. X chromosome-linked deletions are relevant for impaired spermatogenesis. In about 40% of male infertility, the cause is unknown and novel genetic factors are expected to be discovered in the near future.
Assuntos
Hormônio Foliculoestimulante/metabolismo , Aconselhamento Genético , Testes Genéticos , Infertilidade Masculina , Técnicas de Reprodução Assistida , Deleção Cromossômica , Hormônio Foliculoestimulante/genética , Humanos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/psicologia , Infertilidade Masculina/terapia , Masculino , Guias de Prática Clínica como Assunto , Proteínas de Plasma Seminal , Bancos de EspermaRESUMO
INTRODUCTION: Spermatogenesis is a highly complex process involving several thousand genes, only a minority of which have been studied in infertile men. In a previous study, we identified a number of Copy Number Variants (CNVs) by high-resolution array-Comparative Genomic Hybridization (a-CGH) analysis of the X chromosome, including 16 patient-specific X chromosome-linked gains. Of these, five gains (DUP1A, DUP5, DUP20, DUP26 and DUP40) were selected for further analysis to evaluate their clinical significance. MATERIALS AND METHODS: The copy number state of the five selected loci was analyzed by quantitative-PCR on a total of 276 idiopathic infertile patients and 327 controls in a conventional case-control setting (199 subjects belonged to the previous a-CGH study). For one interesting locus (intersecting DUP1A) additional 338 subjects were analyzed. RESULTS AND DISCUSSION: All gains were confirmed as patient-specific and the difference in duplication load between patients and controls is significant (p = 1.65 × 10(-4)). Two of the CNVs are private variants, whereas 3 are found recurrently in patients and none of the controls. These CNVs include, or are in close proximity to, genes with testis-specific expression. DUP1A, mapping to the PAR1, is found at the highest frequency (1.4%) that was significantly different from controls (0%) (p = 0.047 after Bonferroni correction). Two mechanisms are proposed by which DUP1A may cause spermatogenic failure: i) by affecting the correct regulation of a gene with potential role in spermatogenesis; ii) by disturbing recombination between PAR1 regions during meiosis. This study allowed the identification of novel spermatogenesis candidate genes linked to the 5 CNVs and the discovery of the first recurrent, X-linked gain with potential clinical relevance.
Assuntos
Cromossomos Humanos X/genética , Variações do Número de Cópias de DNA , Duplicação Gênica , Infertilidade Masculina/genética , Estudos de Casos e Controles , Humanos , MasculinoRESUMO
AZF microdeletion screening is routinely performed in the diagnostic work-up for male infertility; however, some issues remain debated. In this study, we provide insights into the sperm concentration cutoff value for routine testing, the predictive value of AZFc deletion for testicular sperm retrieval and the Y-background contribution to the interpopulation variability of deletion frequencies. In the Spanish population, partial AZFc rearrangements have been poorly explored and no data exist on partial duplications. In our study, 27/806 (3.3%) patients carried complete AZF deletions. All were azoo/cryptozoospermic, except for one whose sperm concentration was 2 × 10(6)/ml. In AZFc-deleted men, we observed a lower sperm recovery rate upon conventional TESE (9.1%) compared with the literature (60-80% with microTESE). Haplogroup E was the most represented among non-Spanish and hgr P among Spanish AZF deletion carriers. The analysis of AZFc partial rearrangements included 330 idiopathic infertile patients and 385 controls of Spanish origin. Gr/gr deletion, but not AZFc partial duplications, was significantly associated with spermatogenic impairment. Our data integrated with the literature suggest that: (1) routine AZF microdeletion testing could eventually include only men with ≤2 × 10(6)/ml; (2) classical TESE is associated with low sperm recovery rate in azoospermic AZFc-deleted men, and therefore microTESE should be preferred; (3) Y background could partially explain the differences in deletion frequencies among populations. Finally, our data on gr/gr deletion further support the inclusion of this genetic test in the work-up of infertile men, whereas partial AZFc duplications do not represent a risk for spermatogenic failure in the Spanish population.
Assuntos
Cromossomos Humanos Y/genética , Variações do Número de Cópias de DNA , Testes Genéticos/métodos , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/genética , Deleção Cromossômica , Loci Gênicos/genética , Genótipo , Haplótipos , Humanos , Cariótipo , Masculino , Oligospermia/genética , Fenótipo , Espanha , Contagem de Espermatozoides , Espermatogênese/genéticaRESUMO
Data about the entire sperm DNA methylome are limited to two sperm donors whereas studies dealing with a greater number of subjects focused only on a few genes or were based on low resolution arrays. This implies that information about what we can consider as a normal sperm DNA methylome and whether it is stable among different normozoospermic individuals is still missing. The definition of the DNA methylation profile of normozoospermic men, the entity of inter-individual variability and the epigenetic characterization of quality-fractioned sperm subpopulations in the same subject (intra-individual variability) are relevant for a better understanding of pathological conditions. We addressed these questions by using the high resolution Infinium 450K methylation array and compared normal sperm DNA methylomes against somatic and cancer cells. Our study, based on the largest number of subjects (nâ=â8) ever considered for such a large number of CpGs (nâ=â487,517), provided clear evidence for i) a highly conserved DNA methylation profile among normozoospermic subjects; ii) a stable sperm DNA methylation pattern in different quality-fractioned sperm populations of the same individual. The latter finding is particularly relevant if we consider that different quality fractioned sperm subpopulations show differences in their structural features, metabolic and genomic profiles. We demonstrate, for the first time, that DNA methylation in normozoospermic men remains highly uniform regardless the quality of sperm subpopulations. In addition, our analysis provided both confirmatory and novel data concerning the sperm DNA methylome, including its peculiar features in respect to somatic and cancer cells. Our description about a highly polarized sperm DNA methylation profile, the clearly distinct genomic and functional organization of hypo- versus hypermethylated loci as well as the association of histone-enriched hypomethylated loci with embryonic development, which we now extended also to hypomethylated piRNAs-linked genes, provides solid basis for future basic and clinical research.
Assuntos
Metilação de DNA , Espermatozoides/metabolismo , Adulto , Ilhas de CpG , Bases de Dados Genéticas , Epigênese Genética , Humanos , Masculino , Pessoa de Meia-Idade , Pequeno RNA não Traduzido/metabolismo , Vocabulário ControladoRESUMO
CONTEXT: The role of CNVs in male infertility is poorly defined, and only those linked to the Y chromosome have been the object of extensive research. Although it has been predicted that the X chromosome is also enriched in spermatogenesis genes, no clinically relevant gene mutations have been identified so far. OBJECTIVES: In order to advance our understanding of the role of X-linked genetic factors in male infertility, we applied high resolution X chromosome specific array-CGH in 199 men with different sperm count followed by the analysis of selected, patient-specific deletions in large groups of cases and normozoospermic controls. RESULTS: We identified 73 CNVs, among which 55 are novel, providing the largest collection of X-linked CNVs in relation to spermatogenesis. We found 12 patient-specific deletions with potential clinical implication. Cancer Testis Antigen gene family members were the most frequently affected genes, and represent new genetic targets in relationship with altered spermatogenesis. One of the most relevant findings of our study is the significantly higher global burden of deletions in patients compared to controls due to an excessive rate of deletions/person (0.57 versus 0.21, respectively; pâ=â8.785×10(-6)) and to a higher mean sequence loss/person (11.79 Kb and 8.13 Kb, respectively; pâ=â3.435×10(-4)). CONCLUSIONS: By the analysis of the X chromosome at the highest resolution available to date, in a large group of subjects with known sperm count we observed a deletion burden in relation to spermatogenic impairment and the lack of highly recurrent deletions on the X chromosome. We identified a number of potentially important patient-specific CNVs and candidate spermatogenesis genes, which represent novel targets for future investigations.