Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 138(5): 961-75, 2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19737522

RESUMO

Obesity is associated with chronic low-grade inflammation that negatively impacts insulin sensitivity. Here, we show that high-fat diet can increase NF-kappaB activation in mice, which leads to a sustained elevation in level of IkappaB kinase epsilon (IKKepsilon) in liver, adipocytes, and adipose tissue macrophages. IKKepsilon knockout mice are protected from high-fat diet-induced obesity, chronic inflammation in liver and fat, hepatic steatosis, and whole-body insulin resistance. These mice show increased energy expenditure and thermogenesis via enhanced expression of the uncoupling protein UCP1. They maintain insulin sensitivity in liver and fat, without activation of the proinflammatory JNK pathway. Gene expression analyses indicate that IKKepsilon knockout reduces expression of inflammatory cytokines, and changes expression of certain regulatory proteins and enzymes involved in glucose and lipid metabolism. Thus, IKKepsilon may represent an attractive therapeutic target for obesity, insulin resistance, diabetes, and other complications associated with these disorders.


Assuntos
Metabolismo Energético , Quinase I-kappa B/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Fígado Gorduroso , Quinase I-kappa B/genética , Insulina/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo , Obesidade/imunologia
2.
J Cell Sci ; 130(20): 3517-3531, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28864765

RESUMO

Vinexin, c-Cbl associated protein (CAP) and Arg-binding protein 2 (ArgBP2) constitute an adaptor protein family called the vinexin (SORBS) family that is targeted to focal adhesions (FAs). Although numerous studies have focused on each of the SORBS proteins and partially elucidated their involvement in mechanotransduction, a comparative analysis of their function has not been well addressed. Here, we established mouse embryonic fibroblasts that individually expressed SORBS proteins and analysed their functions in an identical cell context. Both vinexin-α and CAP co-localized with vinculin at FAs and promoted the appearance of vinculin-rich FAs, whereas ArgBP2 co-localized with α-actinin at the proximal end of FAs and punctate structures on actin stress fibers (SFs), and induced paxillin-rich FAs. Furthermore, both vinexin-α and CAP contributed to extracellular matrix stiffness-dependent vinculin behaviors, while ArgBP2 stabilized α-actinin on SFs and enhanced intracellular contractile forces. These results demonstrate the differential roles of SORBS proteins in mechanotransduction.


Assuntos
Mecanotransdução Celular , Proteínas Musculares/fisiologia , Actinina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Cultivadas , Citoesqueleto/metabolismo , Matriz Extracelular/fisiologia , Fibroblastos/metabolismo , Adesões Focais/metabolismo , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Proteínas de Ligação a RNA
3.
Nat Med ; 13(4): 455-62, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17351624

RESUMO

Cbl-associated protein (Cap) is a member of a phosphatidylinositol 3-kinase-independent pathway for insulin-stimulated translocation of the glucose transporter GLUT4. Despite this positive role of Cap in glucose uptake, here we show that deletion of the gene encoding Cap (official gene name: Sorbs1) protects against high-fat diet (HFD)-induced insulin resistance in mice while also having an opposite, insulin-sensitizing effect, accompanied by reduced tissue markers of inflammation. Given the emerging role of chronic inflammation in insulin resistance and the macrophage in initiating this inflammatory process, we considered that Sorbs1 deletion from macrophages may have resulted in the observed protection from HFD-induced insulin resistance. Using bone marrow transplantation to generate functional Sorbs1-null macrophages, we show that the insulin-sensitive phenotype can be transferred to wild-type mice by transplantation of Sorbs1-null bone marrow. These studies show that macrophages are an important cell type in the induction of insulin resistance and that Cap has a modulatory role in this function.


Assuntos
Deleção de Genes , Resistência à Insulina/genética , Proteínas dos Microfilamentos/genética , Adipócitos/metabolismo , Animais , Transplante de Medula Óssea , Gorduras na Dieta , Histocitoquímica , Immunoblotting , Resistência à Insulina/fisiologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo
4.
Cell Metab ; 5(1): 59-72, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17189207

RESUMO

Insulin stimulates glucose uptake by promoting translocation of the Glut4 glucose transporter from intracellular storage compartments to the plasma membrane. In the absence of insulin, Glut4 is retained intracellularly; the mechanism underlying this process remains uncertain. Using the TC10-interacting protein CIP4 as bait in a yeast two-hybrid screen, we cloned a RasGAP and VPS9 domain-containing protein, Gapex-5/RME-6. The VPS9 domain is a guanine nucleotide exchange factor for Rab31, a Rab5 subfamily GTPase implicated in trans-Golgi network (TGN)-to-endosome trafficking. Overexpression of Rab31 blocks insulin-stimulated Glut4 translocation, whereas knockdown of Rab31 potentiates insulin-stimulated Glut4 translocation and glucose uptake. Gapex-5 is predominantly cytosolic in untreated cells; its overexpression promotes intracellular retention of Glut4 in adipocytes. Insulin recruits the CIP4/Gapex-5 complex to the plasma membrane, thus reducing Rab31 activity and permitting Glut4 vesicles to translocate to the cell surface, where Glut4 docks and fuses to transport glucose into the cell.


Assuntos
Adipócitos/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Insulina/metabolismo , Camundongos , Antígenos de Histocompatibilidade Menor , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico , Alinhamento de Sequência , Técnicas do Sistema de Duplo-Híbrido
5.
Dev Cell ; 13(3): 391-404, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17765682

RESUMO

Insulin stimulates glucose transport in muscle and adipose tissue by producing translocation of the glucose transporter Glut4. The exocyst, an evolutionarily conserved vesicle tethering complex, is crucial for targeting Glut4 to the plasma membrane. Here we report that insulin regulates this process via the G protein RalA, which is present in Glut4 vesicles and interacts with the exocyst in adipocytes. Insulin stimulates the activity of RalA in a PI 3-kinase-dependent manner. Disruption of RalA function by dominant-negative mutants or siRNA-mediated knockdown attenuates insulin-stimulated glucose transport. RalA also interacts with Myo1c, a molecular motor implicated in Glut4 trafficking. This interaction is modulated by Calmodulin, which functions as the light chain for Myo1c during insulin-stimulated glucose uptake. Thus, RalA serves two functions in insulin action: as a cargo receptor for the Myo1c motor, and as a signal for the unification of the exocyst to target Glut4 vesicles to the plasma membrane.


Assuntos
Membrana Celular/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células CHO , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetinae , Cricetulus , Exocitose/fisiologia , Lentivirus/genética , Camundongos , Modelos Biológicos , Miosina Tipo I , Miosinas/metabolismo , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Transfecção
6.
Mol Biol Cell ; 17(5): 2303-11, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16525015

RESUMO

Lipid raft microdomains act as organizing centers for signal transduction. We report here that the exocyst complex, consisting of Exo70, Sec6, and Sec8, regulates the compartmentalization of Glut4-containing vesicles at lipid raft domains in adipocytes. Exo70 is recruited by the G protein TC10 after activation by insulin and brings with it Sec6 and Sec8. Knockdowns of these proteins block insulin-stimulated glucose uptake. Moreover, their targeting to lipid rafts is required for glucose uptake and Glut4 docking at the plasma membrane. The assembly of this complex also requires the PDZ domain protein SAP97, a member of the MAGUKs family, which binds to Sec8 upon its translocation to the lipid raft. Exocyst assembly at lipid rafts sets up targeting sites for Glut4 vesicles, which transiently associate with these microdomains upon stimulation of cells with insulin. These results suggest that the TC10/exocyst complex/SAP97 axis plays an important role in the tethering of Glut4 vesicles to the plasma membrane in adipocytes.


Assuntos
Proteínas de Transporte/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Vesículas Transportadoras/metabolismo , Células 3T3-L1 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Apoptose , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Proteína 1 Homóloga a Discs-Large , Glucose/metabolismo , Guanilato Quinases , Insulina/farmacologia , Fusão de Membrana , Microdomínios da Membrana/química , Proteínas de Membrana/análise , Proteínas de Membrana/genética , Camundongos , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , Proteínas de Transporte Vesicular , Proteínas rho de Ligação ao GTP
7.
Diabetes ; 56(2): 295-303, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17259372

RESUMO

The Wnt family of secreted signaling molecules has profound effects on diverse developmental processes, including the fate of mesenchymal progenitors. While activation of Wnt signaling blocks adipogenesis, inhibition of endogenous Wnt/beta-catenin signaling by Wnt10b promotes spontaneous preadipocyte differentiation. Transgenic mice with expression of Wnt10b from the FABP4 promoter (FABP4-Wnt10b) have less adipose tissue when maintained on a normal chow diet and are resistant to diet-induced obesity. Here we demonstrate that FABP4-Wnt10b mice largely avert weight gain and metabolic abnormalities associated with genetic obesity. FABP4-Wnt10b mice do not gain significant body weight on the ob/ob background, and at 8 weeks of age, they have an approximately 70% reduction in visceral and subcutaneous adipose tissues compared with ob/ob mice. Similarly, on the lethal yellow agouti (A(y)) background, FABP4-Wnt10b mice have 50-70% less adipose tissue weight and circulating leptin at 5 months of age. Wnt10b-Ay mice are more glucose tolerant and insulin sensitive than A(y) controls, perhaps due to reduced expression and circulation of resistin. Reduced expression of inflammatory cytokines may also contribute to improved glucose homeostasis.


Assuntos
Tecido Adiposo/fisiologia , Proteínas de Ligação a Ácido Graxo/fisiologia , Resistência à Insulina/fisiologia , Obesidade/fisiopatologia , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Wnt/fisiologia , Proteína Agouti Sinalizadora , Animais , Glicemia/fisiologia , Modelos Animais de Doenças , Ingestão de Energia/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leptina/deficiência , Leptina/genética , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/genética , Consumo de Oxigênio/fisiologia , Paniculite/fisiopatologia
8.
Endocrinology ; 148(1): 27-33, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17008399

RESUMO

Previous studies have suggested that activation of the Rho family member GTPase TC10 is necessary but not sufficient for the stimulation of glucose transport by insulin. We show here that endogenous TC10alpha is rapidly activated in response to insulin in 3T3L1 adipocytes in a phosphatidylinositol 3-kinase-independent manner, whereas platelet-derived growth factor was without effect. Knockdown of TC10alpha but not TC10beta by RNA interference inhibited insulin-stimulated glucose uptake as well as the translocation of the insulin-sensitive glucose transporter GLUT4 from intracellular sites to the plasma membrane. In contrast, loss of TC10alpha had no effect on the stimulation of Akt by insulin. Additionally, knockdown of TC10alpha inhibited insulin-stimulated translocation of its effector CIP4. These data indicate that TC10alpha is specifically required for insulin-stimulated glucose uptake in adipocytes.


Assuntos
Adipócitos/metabolismo , Glucose/farmacocinética , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Antígenos de Histocompatibilidade Menor , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/genética
9.
Trends Genet ; 19(10): 523-5, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14550624

RESUMO

The incidence of obesity has reached epidemic proportions within industrial societies; however, research on human obesity has been hampered by our inability to control genetic and environmental factors. The control of energy homeostasis appears to be conserved among species. Recent creative research in Caenorhabditis elegans, including the application of a genome-wide RNA interference analysis, has provided insight into the genes involved in energy balance. In this article, we discuss the results of these studies and their potential importance to humans.


Assuntos
Caenorhabditis elegans/genética , Ingestão de Energia/genética , Metabolismo Energético/genética , Obesidade/genética , Fatores de Transcrição , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Ingestão de Energia/fisiologia , Metabolismo Energético/fisiologia , Homeostase/genética , Homeostase/fisiologia , Humanos , Obesidade/metabolismo , Interferência de RNA , Proteína de Ligação a Elemento Regulador de Esterol 1
10.
Mol Cell Biol ; 23(3): 961-74, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12529401

RESUMO

To examine the structural determinants necessary for TC10 trafficking, localization, and function in adipocytes, we generated a series of point mutations in the carboxyl-terminal targeting domain of TC10. Wild-type TC10 (TC10/WT) localized to secretory membrane compartments and caveolin-positive lipid raft microdomains at the plasma membrane. Expression of a TC10/C206S point mutant resulted in a trafficking and localization pattern that was indistinguishable from that of TC10/WT. In contrast, although TC10/C209S or the double TC10/C206,209S mutant was plasma membrane localized, it was excluded from both the secretory membrane system and the lipid raft compartments. Surprisingly, inhibition of Golgi membrane transport with brefeldin A did not prevent plasma membrane localization of TC10 or H-Ras. Moreover, inhibition of trans-Golgi network exit with a 19 degrees C temperature block did not prevent the trafficking of TC10 or H-Ras to the plasma membrane. These data demonstrate that TC10 and H-Ras can both traffic to the plasma membrane by at least two distinct transport mechanisms in adipocytes, one dependent upon intracellular membrane transport and another independent of the classical secretory membrane system. Moreover, the transport through the secretory pathway is necessary for the localization of TC10 to lipid raft microdomains at the plasma membrane.


Assuntos
Adipócitos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Células 3T3 , Sequência de Aminoácidos , Animais , Transporte Biológico Ativo , Compartimento Celular , Exocitose , Insulina/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação Puntual , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/genética
11.
Sci Signal ; 10(471)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325821

RESUMO

Insulin stimulates glucose uptake through the translocation of the glucose transporter GLUT4 to the plasma membrane. The exocyst complex tethers GLUT4-containing vesicles to the plasma membrane, a process that requires the binding of the G protein (heterotrimeric guanine nucleotide-binding protein) RalA to the exocyst complex. We report that upon activation of RalA, the protein kinase TBK1 phosphorylated the exocyst subunit Exo84. Knockdown of TBK1 blocked insulin-stimulated glucose uptake and GLUT4 translocation; knockout of TBK1 in adipocytes blocked insulin-stimulated glucose uptake; and ectopic overexpression of a kinase-inactive mutant of TBK1 reduced insulin-stimulated glucose uptake in 3T3-L1 adipocytes. The phosphorylation of Exo84 by TBK1 reduced its affinity for RalA and enabled its release from the exocyst. Overexpression of a kinase-inactive mutant of TBK1 blocked the dissociation of the TBK1/RalA/exocyst complex, and treatment of 3T3-L1 adipocytes with specific inhibitors of TBK1 reduced the rate of complex dissociation. Introduction of phosphorylation-mimicking or nonphosphorylatable mutant forms of Exo84 blocked insulin-stimulated GLUT4 translocation. Thus, these data indicate that TBK1 controls GLUT4 vesicle engagement and disengagement from the exocyst, suggesting that exocyst components not only constitute a tethering complex for the GLUT4 vesicle but also act as "gatekeepers" controlling vesicle fusion at the plasma membrane.


Assuntos
Adipócitos/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Transportador de Glucose Tipo 4/genética , Hipoglicemiantes/farmacologia , Immunoblotting , Camundongos , Mutação , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Proteínas de Transporte Vesicular/genética , Proteínas ral de Ligação ao GTP/genética , Proteínas ral de Ligação ao GTP/metabolismo
12.
Methods Enzymol ; 406: 701-14, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16472699

RESUMO

Insulin stimulates glucose uptake in insulin-responsive tissues by means of the translocation of the glucose transporter GLUT4 from intracellular sites to the plasma membrane. Two pathways are required, one involving activation of a phosphatidylinositol 3-kinase (PI 3-kinase) and downstream protein kinases, and one involving activation of the Rho-family GTPase TC10. TC10 activation by insulin is catalyzed by the exchange factor C3G, which is translocated to lipid rafts along with its binding partner CrkII as a consequence of Cbl tyrosine phosphorylation by the insulin receptor. This activation of TC10 is dependent on localization of TC10 in the lipid raft subdomains of the plasma membrane. We describe experimental approaches using the insulin-responsive cell line 3T3-L1 adipocytes to study the role of TC10 in insulin-stimulated glucose transport.


Assuntos
Transportador de Glucose Tipo 4/metabolismo , Insulina/farmacologia , Proteínas rho de Ligação ao GTP/fisiologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Androstadienos/farmacologia , Animais , Diferenciação Celular , Centrifugação com Gradiente de Concentração , Eletroporação , Imunofluorescência , Glutationa Transferase/genética , Magnésio/farmacologia , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Recombinantes de Fusão , Wortmanina , Proteínas rho de Ligação ao GTP/genética
13.
PLoS One ; 10(8): e0134927, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26287487

RESUMO

Nicotinamide adenine dinucleotide (NAD+) is a key cofactor required for essential metabolic oxidation-reduction reactions. It also regulates various cellular activities, including gene expression, signaling, DNA repair and calcium homeostasis. Intracellular NAD+ levels are tightly regulated and often respond rapidly to nutritional and environmental changes. Numerous studies indicate that elevating NAD+ may be therapeutically beneficial in the context of numerous diseases. However, the role of NAD+ on skeletal muscle exercise performance is poorly understood. CD38, a multi-functional membrane receptor and enzyme, consumes NAD+ to generate products such as cyclic-ADP-ribose. CD38 knockout mice show elevated tissue and blood NAD+ level. Chronic feeding of high-fat, high-sucrose diet to wild type mice leads to exercise intolerance and reduced metabolic flexibility. Loss of CD38 by genetic mutation protects mice from diet-induced metabolic deficit. These animal model results suggest that elevation of tissue NAD+ through genetic ablation of CD38 can profoundly alter energy homeostasis in animals that are maintained on a calorically-excessive Western diet.


Assuntos
ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/metabolismo , Dieta Ocidental/efeitos adversos , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Condicionamento Físico Animal/fisiologia , ADP-Ribosil Ciclase/metabolismo , Animais , ADP-Ribose Cíclica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , NAD/metabolismo , Oxirredução
14.
Elife ; 2: e01119, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24368730

RESUMO

Obesity produces a chronic inflammatory state involving the NFκB pathway, resulting in persistent elevation of the noncanonical IκB kinases IKKε and TBK1. In this study, we report that these kinases attenuate ß-adrenergic signaling in white adipose tissue. Treatment of 3T3-L1 adipocytes with specific inhibitors of these kinases restored ß-adrenergic signaling and lipolysis attenuated by TNFα and Poly (I:C). Conversely, overexpression of the kinases reduced induction of Ucp1, lipolysis, cAMP levels, and phosphorylation of hormone sensitive lipase in response to isoproterenol or forskolin. Noncanonical IKKs reduce catecholamine sensitivity by phosphorylating and activating the major adipocyte phosphodiesterase PDE3B. In vivo inhibition of these kinases by treatment of obese mice with the drug amlexanox reversed obesity-induced catecholamine resistance, and restored PKA signaling in response to injection of a ß-3 adrenergic agonist. These studies suggest that by reducing production of cAMP in adipocytes, IKKε and TBK1 may contribute to the repression of energy expenditure during obesity. DOI: http://dx.doi.org/10.7554/eLife.01119.001.


Assuntos
Adipócitos/enzimologia , Tecido Adiposo Branco/enzimologia , Catecolaminas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Quinase I-kappa B/metabolismo , Inflamação/enzimologia , Obesidade/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Aminopiridinas/farmacologia , Animais , Células COS , Chlorocebus aethiops , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Dioxóis/farmacologia , Modelos Animais de Doenças , Metabolismo Energético , Ativação Enzimática , Células HEK293 , Humanos , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/genética , Inflamação/genética , Canais Iônicos/metabolismo , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Obesidade/genética , Fosforilação , Poli I-C/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Esterol Esterase/metabolismo , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/farmacologia , Proteína Desacopladora 1
15.
Nat Med ; 19(3): 313-21, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396211

RESUMO

Emerging evidence suggests that inflammation provides a link between obesity and insulin resistance. The noncanonical IκB kinases IKK-ɛ and TANK-binding kinase 1 (TBK1) are induced in liver and fat by NF-κB activation upon high-fat diet feeding and in turn initiate a program of counterinflammation that preserves energy storage. Here we report that amlexanox, an approved small-molecule therapeutic presently used in the clinic to treat aphthous ulcers and asthma, is an inhibitor of these kinases. Treatment of obese mice with amlexanox elevates energy expenditure through increased thermogenesis, producing weight loss, improved insulin sensitivity and decreased steatosis. Because of its record of safety in patients, amlexanox may be an interesting candidate for clinical evaluation in the treatment of obesity and related disorders.


Assuntos
Aminopiridinas/farmacologia , Fármacos Antiobesidade/farmacologia , Metabolismo Energético/efeitos dos fármacos , Quinase I-kappa B/antagonistas & inibidores , Resistência à Insulina , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , Antialérgicos/farmacologia , Linhagem Celular , Dieta Hiperlipídica , Ativação Enzimática , Fígado Gorduroso/tratamento farmacológico , Transtornos do Metabolismo de Glucose/tratamento farmacológico , Quinase I-kappa B/metabolismo , Resistência à Insulina/imunologia , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , NF-kappa B/metabolismo , Obesidade/tratamento farmacológico , Obesidade/imunologia , Consumo de Oxigênio/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Redução de Peso/efeitos dos fármacos
16.
J Biol Chem ; 283(26): 18002-11, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18408001

RESUMO

The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPalpha) is required during adipogenesis for development of insulin-stimulated glucose uptake. Modes for regulating this function of C/EBPalpha have yet to be determined. Phosphorylation of C/EBPalpha on Ser-21 has been implicated in the regulation of granulopoiesis and hepatic gene expression. To explore the role of Ser-21 phosphorylation on C/EBPalpha function during adipogenesis, we developed constructs in which Ser-21 was mutated to alanine (S21A) to model dephosphorylation. In two cell culture models deficient in endogenous C/EBPalpha, enforced expression of S21A-C/EBPalpha resulted in normal lipid accumulation and expression of many adipogenic markers. However, S21A-C/EBPalpha had impaired ability to activate the Glut4 promoter specifically, and S21A-C/EBPalpha expression resulted in diminished GLUT4 and adiponectin expression, as well as reduced insulin-stimulated glucose uptake. No defects in insulin signaling or GLUT4 vesicle trafficking were identified with S21A-C/EBPalpha expression, and when exogenous GLUT4 expression was enforced to normalize expression in S21A-C/EBPalpha cells, insulin-responsive glucose transport was reconstituted, suggesting that the primary defect was a deficit in GLUT4 levels. Mice in which endogenous C/EBPalpha was replaced with S21A-C/EBPalpha displayed reduced GLUT4 and adiponectin protein expression in epididymal adipose tissue and increased blood glucose compared with wild-type littermates. These results suggest that phosphorylation of C/EBPalpha on Ser-21 may regulate adipocyte gene expression and whole body glucose homeostasis.


Assuntos
Adipócitos/citologia , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/fisiologia , Células 3T3-L1 , Animais , Transporte Biológico , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Homeostase , Camundongos , Fosforilação , Plasmídeos/metabolismo , Retroviridae/metabolismo , Serina/química , Ativação Transcricional
17.
Mol Biol Cell ; 19(7): 2718-28, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18434594

RESUMO

Phosphatidylinositol 3-phosphate (PI(3)P) plays an important role in insulin-stimulated glucose uptake. Insulin promotes the production of PI(3)P at the plasma membrane by a process dependent on TC10 activation. Here, we report that insulin-stimulated PI(3)P production requires the activation of Rab5, a small GTPase that plays a critical role in phosphoinositide synthesis and turnover. This activation occurs at the plasma membrane and is downstream of TC10. TC10 stimulates Rab5 activity via the recruitment of GAPEX-5, a VPS9 domain-containing guanyl nucleotide exchange factor that forms a complex with TC10. Although overexpression of plasma membrane-localized GAPEX-5 or constitutively active Rab5 promotes PI(3)P formation, knockdown of GAPEX-5 or overexpression of a dominant negative Rab5 mutant blocks the effects of insulin or TC10 on this process. Concomitant with its effect on PI(3)P levels, the knockdown of GAPEX-5 blocks insulin-stimulated Glut4 translocation and glucose uptake. Together, these studies suggest that the TC10/GAPEX-5/Rab5 axis mediates insulin-stimulated production of PI(3)P, which regulates trafficking of Glut4 vesicles.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insulina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Células 3T3-L1 , Animais , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Fator de Crescimento Epidérmico/metabolismo , Regulação da Expressão Gênica , Camundongos , Modelos Biológicos , Estrutura Terciária de Proteína
18.
J Biol Chem ; 283(21): 14355-65, 2008 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-18334488

RESUMO

FSP27 (fat-specific protein 27) is a member of the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family. Although Cidea and Cideb were initially characterized as activators of apoptosis, recent studies have demonstrated important metabolic roles for these proteins. In this study, we investigated the function of another member of this family, FSP27 (Cidec), in apoptosis and adipocyte metabolism. Although overexpression of FSP27 is sufficient to increase apoptosis of 293T and 3T3-L1 cells, more physiological levels of expression stimulate spontaneous lipid accumulation in several cell types without induction of adipocyte genes. Increased triacylglycerol is likely due to decreased beta-oxidation of nonesterified fatty acids. Altered flux of fatty acids into triacylglycerol may be a direct effect of FSP27 function, which is localized to lipid droplets in 293T cells and 3T3-L1 adipocytes. Stable knockdown of FSP27 during adipogenesis of 3T3-L1 cells substantially decreases lipid droplet size, increases mitochondrial and lipid droplet number, and modestly increases glucose uptake and lipolysis. Expression of FSP27 in subcutaneous adipose tissue of a human diabetes cohort decreases with total fat mass but is not associated with measures of insulin resistance (e.g. homeostasis model assessment). Together, these data indicate that FSP27 binds to lipid droplets and regulates their enlargement.


Assuntos
Proteínas/metabolismo , Triglicerídeos/metabolismo , Adipogenia , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Biomarcadores , Linhagem Celular , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Humanos , Camundongos , Mitocôndrias/metabolismo , Obesidade/metabolismo , Oxirredução , Proteínas/genética
19.
J Biol Chem ; 280(24): 23024-31, 2005 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-15831500

RESUMO

Liver X receptors (LXR) alpha and beta are nuclear oxysterol receptors with established roles in cholesterol, lipid, and carbohydrate metabolism. Although LXRs have been extensively studied in liver and macrophages, the importance for development and metabolism of other tissues and cell types is not as well characterized. We demonstrate here that although LXRalpha and LXRbeta are not required for adipocyte development per se, LXRbeta is required for the increase in adipocyte size that normally occurs with aging and diet-induced obesity. Similar food intake and oxygen consumption in LXRbeta-/- mice suggests that reduced storage of lipid in adipose tissue is not due to altered energy balance. Despite reduced amounts of adipose tissue, LXRbeta-/- mice on a chow diet have insulin sensitivity and levels of adipocyte hormones similar to wild type mice. However, these mice are glucose-intolerant due to impaired glucose-induced insulin secretion. Lipid droplets in pancreatic islets may result from accumulation of cholesterol esters as analysis of islet gene expression reveals that LXRbeta is required for expression of the cholesterol transporters, ABCA1 and ABCG1. Our data establish novel roles for LXRbeta in adipocyte growth, glucose homeostasis, and beta cell function.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Adipócitos/citologia , Tecido Adiposo/metabolismo , Envelhecimento , Animais , Composição Corporal , Metabolismo dos Carboidratos , Colesterol/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dieta , Imunoensaio , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Receptores X do Fígado , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Obesidade , Receptores Nucleares Órfãos , Oxigênio/metabolismo , Consumo de Oxigênio , Ácido Pirúvico/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
20.
Mol Med ; 10(7-12): 65-71, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16307172

RESUMO

Gaps remain in our understanding of the precise molecular mechanisms by which insulin regulates glucose uptake in fat and muscle cells. Recent evidence suggests that insulin action involves multiple pathways, each compartmentalized in discrete domains. Upon activation, the receptor catalyzes the tyrosine phosphorylation of a number of substrates. One family of these, the insulin receptor substrate (IRS) proteins, initiates activation of the phosphatidylinositol 3-kinase pathway, resulting in stimulation of protein kinases such as Akt and atypical protein kinase C. The receptor also phosphorylates the adapter protein APS, resulting in the activation of the G protein TC10, which resides in lipid rafts. TC10 can influence a number of cellular processes, including changes in the actin cytoskeleton, recruitment of effectors such as the adapter protein CIP4, and assembly of the exocyst complex. These pathways converge to control the recycling of the facilitative glucose transporter Glut4.


Assuntos
Glucose/metabolismo , Insulina/metabolismo , Transdução de Sinais , Animais , Transporte Biológico , Transportador de Glucose Tipo 4/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA