Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(37)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34508003

RESUMO

We recently synthesized one-dimensional (1D) van der Waals heterostructures in which different atomic layers (e.g., boron nitride or molybdenum disulfide) seamlessly wrap around a single-walled carbon nanotube (SWCNT) and form a coaxial, crystalized heteronanotube. The growth process of 1D heterostructure is unconventional-different crystals need to nucleate on a highly curved surface and extend nanotubes shell by shell-so understanding the formation mechanism is of fundamental research interest. In this work, we perform a follow-up and comprehensive study on the structural details and formation mechanism of chemical vapor deposition (CVD)-synthesized 1D heterostructures. Edge structures, nucleation sites, and crystal epitaxial relationships are clearly revealed using transmission electron microscopy (TEM). This is achieved by the direct synthesis of heteronanotubes on a CVD-compatible Si/SiO2 TEM grid, which enabled a transfer-free and nondestructive access to many intrinsic structural details. In particular, we have distinguished different-shaped boron nitride nanotube (BNNT) edges, which are confirmed by electron diffraction at the same location to be strictly associated with its own chiral angle and polarity. We also demonstrate the importance of surface cleanness and isolation for the formation of perfect 1D heterostructures. Furthermore, we elucidate the handedness correlation between the SWCNT template and BNNT crystals. This work not only provides an in-depth understanding of this 1D heterostructure material group but also, in a more general perspective, serves as an interesting investigation on crystal growth on highly curved (radius of a couple of nanometers) atomic substrates.

2.
Nanotechnology ; 32(20): 205708, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33513593

RESUMO

The thermal properties of individual single-walled carbon nanotubes (SWCNTs) have been well documented in the literature following decades of intensive study. However, when SWCNTs form a macroscale assembly, the thermal transport in these complex structures usually not only depends on the properties of the individual tubes, but also is affected and sometimes dominated by inner structural details, e.g. bundles and junctions. In this work, we first performed an experimental measurement of the thermal conductivities of individual SWCNT bundles of different sizes using a suspended micro-thermometer. The results, together with the data that we obtained from a previous work, give a complete experimental understanding of the effect of bundling on the thermal conductivity of SWCNTs. With these quantitative understandings, we propose a phenomenological model to describe the thermal transport in two-dimensional (2D) SWCNT films. The term 'line density' is defined to describe the effective thermal transport channels in this complex 2D network. Along with experimentally obtained geometric statistics and film transparency, the thermal conductance of SWCNTs is estimated, and the effects of bundle length, diameter, and contact conductance are systematically discussed. Finally, we extend this model to explain thermal transport in 2D networks of one-dimensional van der Waals heterostructures, which are coaxial hetero-nanotubes we recently synthesized using SWCNTs as the template. This extended model suggests that the contribution of boron nitride nanotubes (BNNTs) to the overall performance of a SWCNT-BNNT heterostructured film depends on the transparency of the original SWCNT film. The increase in the thermal conductance of a highly transparent film is estimated to be larger than that of a less transparent film, which shows a good agreement with our experimental observations and proves the validity of the proposed phenomenological model.

3.
Nano Lett ; 20(5): 3560-3567, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32324411

RESUMO

Heterostructures built from 2D, atomically thin crystals are bound by the van der Waals force and exhibit unique optoelectronic properties. Here, we report the structure, composition and optoelectronic properties of 1D van der Waals heterostructures comprising carbon nanotubes wrapped by atomically thin nanotubes of boron nitride and molybdenum disulfide (MoS2). The high quality of the composite was directly made evident on the atomic scale by transmission electron microscopy, and on the macroscopic scale by a study of the heterostructure's equilibrium and ultrafast optoelectronics. Ultrafast pump-probe spectroscopy across the visible and terahertz frequency ranges identified that, in the MoS2 nanotubes, excitons coexisted with a prominent population of free charges. The electron mobility was comparable to that found in high-quality atomically thin crystals. The high mobility of the MoS2 nanotubes highlights the potential of 1D van der Waals heterostructures for nanoscale optoelectronic devices.

4.
Opt Express ; 28(14): 19997-20006, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680068

RESUMO

We study the saturable absorption properties of single-walled carbon nanotubes (SWCNTs) with a large diameter of 2.2 nm and the corresponding exciton resonance at a wavelength of 2.4 µm. At resonant excitation, a large modulation depth of approximately 30 % and a small saturation fluence of a few tens of µJ/cm2 are evaluated. The temporal response is characterized by an instantaneous rise and a subpicosecond recovery. We also utilize the SWCNTs to realize sub-50 fs, self-start mode locking in a Cr:ZnS laser, revealing that the film thickness is an important parameter that affects the possible pulse energy and duration. The results prove that semiconductor SWCNTs with tailored diameters exceeding 2 nm are useful for passive mode locking in the mid-infrared range.

5.
Opt Lett ; 44(7): 1750-1753, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933138

RESUMO

We develop a mode-locked Cr:ZnS polycrystalline laser using single-walled carbon nanotubes (SWCNTs) that have resonant absorption at the wavelength of 2.4 µm. The laser generates ultrashort pulses of 49 fs duration, a 2.4 µm center wavelength, and a 9.2 THz (176 nm) spectral span at a repetition rate of 76 MHz. We also confirm self-starting of the mode-locked operation. SWCNTs, if appropriately controlled in terms of their diameters, prove to be useful as ultrafast saturable absorbers in the mid-infrared region.

6.
ACS Nano ; 18(14): 9917-9928, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38548470

RESUMO

Single-walled carbon nanotube (SWCNT) films exhibit exceptional optical and electrical properties, making them highly promising for scalable integrated devices. Previously, we employed SWCNT films as templates for the chemical vapor deposition (CVD) synthesis of one-dimensional heterostructure films where boron nitride nanotubes (BNNTs) and molybdenum disulfide nanotubes (MoS2NTs) were coaxially nested over the SWCNT networks. In this work, we have further refined the synthesis method to achieve precise control over the BNNT coating in SWCNT@BNNT heterostructure films. The resulting structure of the SWCNT@BNNT films was thoroughly characterized using a combination of electron microscopy, UV-vis-NIR spectroscopy, Fourier-transform infrared (FT-IR) spectroscopy, and Raman spectroscopy. Specifically, we investigated the pressure effect induced by BNNT wrapping on the SWCNTs in the SWCNT@BNNT heterostructure film and demonstrated that the shifts of the SWCNT's G and 2D (G') modes in Raman spectra can be used as a probe of the efficiency of BNNT coating. In addition, we studied the impact of vacuum annealing on the removal of the initial doping in SWCNTs, arising from exposure to ambient atmosphere, and examined the effect of MoO3 doping in SWCNT films by using UV-vis-NIR spectroscopy and Raman spectroscopy. We show that through correlation analysis of the G and 2D (G') modes in Raman spectra, it is possible to discern distinct types of doping effects as well as the influence of applied pressure on the SWCNTs within SWCNT@BNNT heterostructure films. This work contributes to a deeper understanding of the strain and doping effect in both SWCNTs and SWCNT@BNNTs, thereby providing valuable insights for future applications of carbon-nanotube-based one-dimensional heterostructures.

7.
Phys Rev Lett ; 110(15): 157402, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167311

RESUMO

Hydrophilicity or hydrophobicity is a macroscopic property of the surface, and its atomic scale understanding has not been established. We have studied adsorption of water molecules on the "hydrophobic" carbon nanotube surface at room temperature in water vapor. Based on optical measurements of individual single-walled carbon nanotubes suspended between micropillars in water vapor together with molecular dynamics simulations, we found that water molecules form a stable adsorption layer of 1-2 ML thickness on the nanotube surface and they show rapid adsorption and desorption transition at a critical pressure. This adsorption layer is created by lateral hydrogen bonding of water molecules confined in the weak van der Waals potential of the surface. In spite of hydrophobic hydration, carbon nanotubes exhibit hydrophobicity macroscopically.

8.
Nanotechnology ; 24(20): 205302, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23598441

RESUMO

We firstly introduce a facile method for the site-specific direct physical exfoliation of few-layer graphene sheets from cheap and easily enlargeable graphite grown on a Ni foil using an optimized polydimethylsiloxane (PDMS) stamp. By decreasing the PDMS cross-linking time, the PDMS elasticity is reduced to ∼52 kPa, similar to that of a typical gel. As a result of this process, the PDMS becomes more flexible yet remains in a handleable state as a stamp. Furthermore, the PDMS adhesion to a graphite/Ni surface, as measured by the peel strength, increases to ∼5.1 N m⁻¹, which is approximately 17 times greater than that of typical PDMS. These optimized properties allow the PDMS stamp to have improved contact with the graphite/Ni surface, including the graphite wrinkles. This process is verified, and changes in surface morphology are observed using a 3D laser scanning microscope. Under conformal contact, the optimized PDMS stamp demonstrates the site-specific direct physical exfoliation of few-layer graphene sheets including mono- and bi-layer graphene sheets from the graphite/Ni substrate without the use of special equipment, conditions or chemicals. The number of layers of the exfoliated graphene and its high quality are revealed by the measured Raman spectroscopy. The exfoliation method using tunable elasticity and adhesion of the PDMS stamp can be used not only for cost-effective mass production of defect-less few-layer graphene from the graphite substrate for micro/nano device arrays but also for nano-contact printing of various structures, devices and cells.

9.
ACS Appl Mater Interfaces ; 15(8): 10965-10973, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36800512

RESUMO

The nanotube/dielectric interface plays an essential role in achieving superb switching characteristics of carbon nanotube-based transistors for energy-efficient computation. Formation of van der Waals heterostructures with hexagonal boron nitride nanotubes could be an effective means to reduce interface state density, but the need for isolating nanotubes during the formation of coaxial outer layers has hindered the fabrication of their horizontal arrays. Here, we develop a strategy to create isolated heterostructure arrays using aligned carbon nanotubes grown on a quartz substrate as starting materials. Air-suspended arrays of carbon nanotubes are prepared by a dry transfer technique and then used as templates for the coaxial wrapping of boron nitride nanotubes. We then fabricate the transistors, where boron nitride serves as interfacial layers between carbon nanotube channels and conventional gate dielectrics, showing hysteresis-free characteristics owing to the improved interfaces. We have also gained a deeper understanding of the strain applied on inner carbon nanotubes, as well as the inhomogeneity of the outer coating, by characterizing individual heterostructures over trenches and on a substrate surface. The device fabrication and characterization presented here essentially do not require elaborate electron microscopy, thus paving the way for the practical use of one-dimensional van der Waals heterostructures for nanoelectronics.

10.
J Nanosci Nanotechnol ; 12(1): 370-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22523989

RESUMO

In this study, we systematically investigated the influence of catalyst preparation procedures on the mean diameter of single-walled carbon nanotubes (SWNTs) synthesized by the alcohol catalytic chemical vapor deposition (ACCVD) process. It was found that the SWNT diameter is dependent upon both reduction temperature and time, with lower reduction temperature and/or shorter reduction time resulting in smaller diameter SWNTs. The morphology of the SWNTs also changed from vertically aligned to randomly oriented when the reduction temperature was below 500 degrees C. We also found that introducing a small amount of water during the catalyst reduction stage significantly decreased the mean diameter of the SWNTs. Lastly, we report on the use of a new binary catalyst system in which rhodium was combined with cobalt. This new Co/Rh combination produced SWNTs of smaller diameter than the conventional Co/Mo catalyst.


Assuntos
Cristalização/métodos , Gases/química , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
ACS Nano ; 16(4): 5627-5635, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35316012

RESUMO

Single-walled carbon nanotubes have been a candidate for outperforming silicon in ultrascaled transistors, but the realization of nanotube-based integrated circuits requires dense arrays of purely semiconducting species. In order to directly grow such nanotube arrays on wafers, control over kinetics and thermodynamics in tube-catalyst systems plays a key role, and further progress requires a comprehensive understanding of seemingly contradictory reports on the growth kinetics. Here, we propose a universal kinetic model that decomposes the growth rates of nanotubes into the adsorption and removal of carbon atoms on the catalysts, and we provide its quantitative verification by ethanol-based isotope labeling experiments. While the removal of carbon from catalysts dominates the growth kinetics under a low supply of precursors, resulting in chirality-independent growth rates, our kinetic model and experiments demonstrate that chiral angle-dependent growth rates emerge when sufficient amounts of carbon and etching agents are cosupplied. The kinetic maps, as a product of generalizing the model, include five types of kinetic selectivity that emerge depending on the absolute quantities of gases with opposing effects. Our findings not only resolve discrepancies existing in the literature but also offer rational strategies to control the chirality, length, and density of nanotube arrays for practical applications.

12.
Sci Rep ; 11(1): 563, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436656

RESUMO

Second sound and heat diffusion in single-walled carbon nanotubes (SWCNT) are well-known phenomena which is related to the high thermal conductivity of this material. In this paper, we have shown that the heat diffusion along the tube axis affects the macroscopic motion of SWCNT and adapting this phenomena to coarse-grained (CG) model can improve the precision of the coarse-grained molecular dynamics (CGMD) exceptionally. The nonlinear macroscopic motion of SWCNT in the free thermal vibration condition in adiabatic environment is demonstrated in the most simplified version of CG modeling as maintaining finite temperature and total energy with suggested dissipation process derived from internal heat diffusion. The internal heat diffusion related to the cross correlated momentum from different potential energy functions is considered, and it can reproduce the nonlinear dynamic nature of SWCNTs without external thermostatting in CG model. Memory effect and thermostat with random noise distribution are not included, and the effect of heat diffusion on memory effect is quantified through Mori-Zwanzig formalism. This diffusion shows perfect syncronization of the motion between that of CGMD and MD simulation, which is started with initial conditions from the molecular dynamics (MD) simulation. The heat diffusion related to this process has shown the same dispersive characteristics to second wave in SWCNT. This replication with good precision indicates that the internal heat diffusion process is the essential cause of the nonlinearity of the tube. The nonlinear dynamic characteristics from the various scale of simple beads systems are examined with expanding its time step and node length.

13.
ACS Nano ; 15(3): 5600-5609, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33646761

RESUMO

The synthesis of one-dimensional van der Waals heterostructures was realized recently, which offers alternative possibilities for prospective applications in electronics and optoelectronics. The even reduced dimension will enable different properties and further miniaturization beyond the capabilities of their two-dimensional counterparts. The natural doping results in p-type electrical characteristics for semiconducting single-walled carbon nanotubes and n-type for molybdenum disulfide with conventional noble metal contacts. Therefore, we demonstrate here a one-dimensional heterostructure nanotube, 11 nm wide, with the coaxial assembly of a semiconducting single-walled carbon nanotube, insulating boron nitride nanotube, and semiconducting molybdenum disulfide nanotube, which induces a radial semiconductor-insulator-semiconductor heterojunction. When opposite potential polarity was applied on a semiconducting single-walled carbon nanotube and molybdenum disulfide nanotube, respectively, the rectifying effect was materialized.

14.
ACS Nano ; 15(5): 8418-8426, 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-33881302

RESUMO

Single-walled and multiwalled molybdenum disulfide (MoS2) nanotubes have been coaxially synthesized on small-diameter boron nitride nanotubes (BNNTs) that are obtained from removing single-walled carbon nanotubes (SWCNTs) in heteronanotubes of SWCNTs coated by BNNTs. The photoluminescence (PL) from single-walled MoS2 nanotubes supported by core BNNTs is observed in this work, which evidences the direct bandgap structure of single-walled MoS2 nanotubes with a diameter around 6-7 nm. The observation is consistent with our DFT results that the single-walled MoS2 nanotube changes from an indirect-gap to a direct-gap semiconductor when the diameter of a nanotube is more than around 5.2 nm. On the other hand, when there are SWCNTs inside the heteronanotubes of BNNTs and single-walled MoS2 nanotubes, the PL signal from MoS2 nanotubes is considerably quenched. The charge transfer and energy transfer between SWCNTs and single-walled MoS2 nanotubes were examined through characterizations by PL, X-ray photoelectron spectroscopy, and Raman spectroscopy. Moreover, the PL signal from multiwalled MoS2 nanotubes is significantly quenched. Single-walled and multiwalled MoS2 nanotubes exhibit different Raman features in both resonant and nonresonant Raman spectra.

15.
Phys Rev Lett ; 105(15): 157403, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21230938

RESUMO

Adsorption and desorption of atomic hydrogen on single-walled carbon nanotubes were observed by photoluminescence spectroscopy. A satellite peak appeared at the lower energy side of the E11 photoluminescence emission peak after exposure to atomic hydrogen and then disappeared after annealing at 300 °C in vacuum. The energy difference between the satellite peak and E11 peak was 40-80 meV, depending on the tube diameter. The satellite peak was attributed to the triplet dark exciton that became optically active because of the effectively enhanced spin-orbit interaction induced by adsorbed hydrogen atoms.

16.
J Nanosci Nanotechnol ; 10(6): 4068-73, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20355416

RESUMO

We systematically investigate the catalytic properties of Al2O3 particles in the growth of carbon nanotubes (CNTs) in chemical vapor deposition (CVD). Compared with the conventional metal catalysts, the particle size of Al2O3 catalyst has no influence on the number of nanotube walls because only single-walled carbon nanotubes (SWCNTs) are produced. Interestingly, one large Al2O3 particle can usually nucleate several SWCNTs. However, statistical analysis reveals that the average growth rate of SWCNTs from Al2O3 catalyst is about 200 nm/min, which is much lower than that of CNTs grown from Fe catalyst under the same conditions. Additionally, a low gas pressure is found to be important for the growth of SWCNTs from Al2O3 catalyst. These results reflect that Al2O3 catalyst has different catalytic properties from the conventional metal catalysts, which will be helpful for the elucidation of the nanotube growth mechanism.

17.
Nanoscale ; 12(18): 10399-10406, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32373855

RESUMO

Although van der Waals heterostructures composed of graphene and hexagonal boron nitride (h-BN) have attracted wide interest, it is still challenging to prepare them with high quality and controllability. Since contamination induced by transfer cannot be avoided in the case of growth on a metal catalyst, the non-catalytic growth of graphene and h-BN is highly desired. However, unlike graphene, few studies have reported the non-catalytic growth of h-BN, and the lack of controllability in terms of crystal orientation and nucleation density, and size of h-BN has hindered the practical applications of the heterostructures. In this work, we demonstrate the heteroepitaxial growth of aligned monolayer h-BN single-crystals on exfoliated graphite by chemical vapour deposition (CVD) without a metal catalyst. Triangular shaped domains were aligned with each other, which suggests the epitaxy between h-BN and the underlying graphite. Characterisation by Raman spectroscopy, Auger electron spectroscopy, and X-ray photoelectron spectroscopy also confirmed that the h-BN/graphite samples were of high quality. A growth kinetics study over different temperatures indicated an increase in the growth rate at high temperature. Control of nucleation density was realised by changing the hydrogen pressure during CVD or by the heating temperature in air before CVD. Under the optimised growth conditions, the edge length of h-BN single-crystals grew to ∼1 µm, which is the largest size to date for non-catalytic growth. These results will help to obtain structure-controlled, large-area, and impurity-free heterostructures based on h-BN and graphene.

18.
ACS Nano ; 14(4): 4298-4305, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32271541

RESUMO

Carbon nanotubes (CNTs) and boron nitride nanotubes (BNNTs) are one-dimensional materials with high thermal conductivity and similar crystal structures. Additionally, BNNTs feature higher thermal stability in air than CNTs. In this work, a single-walled carbon nanotube (SWCNT) film was used as a template to synthesize a BNNT coating by the chemical vapor deposition (CVD) method to form a coaxial heterostructure. Then, a contact-free steady-state infrared (IR) method was adopted to measure the in-plane sheet thermal conductance of the as-synthesized film. The heterostructured SWCNT-BNNT film demonstrates an enhanced sheet thermal conductance compared with the bare SWCNT film. The increase in sheet thermal conductance shows a reverse relationship with SWCNT film transparency. An enhancement of over 80% (from ∼3.6 to ∼6.4 µW·K-1·sq-1) is attained when the BNNT coating is applied to an SWCNT film with a transparency of 87%. This increase is achieved by BNNTs serving as an additional thermal conducting path. The relationship between the thermal conductance increase and transparency of the SWCNT film is studied by a structured modeling of the SWCNT film. We also discuss the effect of annealing on the thermal conductance of SWCNTs before BNNT growth. Along with the preservation of high electrical conductance, the enhanced thermal conductance of the heterostructured SWCNT-BNNT films makes them a promising building block for thermal and optoelectronic applications.

19.
Science ; 367(6477): 537-542, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32001649

RESUMO

We present the experimental synthesis of one-dimensional (1D) van der Waals heterostructures, a class of materials where different atomic layers are coaxially stacked. We demonstrate the growth of single-crystal layers of hexagonal boron nitride (BN) and molybdenum disulfide (MoS2) crystals on single-walled carbon nanotubes (SWCNTs). For the latter, larger-diameter nanotubes that overcome strain effect were more readily synthesized. We also report a 5-nanometer-diameter heterostructure consisting of an inner SWCNT, a middle three-layer BN nanotube, and an outer MoS2 nanotube. Electron diffraction verifies that all shells in the heterostructures are single crystals. This work suggests that all of the materials in the current 2D library could be rolled into their 1D counterparts and a plethora of function-designable 1D heterostructures could be realized.

20.
Nanotechnology ; 20(34): 345604, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19652286

RESUMO

High-density horizontally aligned single-walled carbon nanotubes (SWCNTs) have been grown by annealing Fe catalyst in air and optimizing catalyst thickness in the gas flow process. The aligned SWCNT density reaches >60 nanotubes per 100 microm and the length can be a few millimeters. Interestingly, the growth of aligned SWCNT arrays can be extended from the catalyst substrate to a downstream substrate across the gap between them by gas flow when the two substrates are put close to each other, and thus an aligned SWCNT array has been achieved on an isolated clean substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA