Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
2.
J Muscle Res Cell Motil ; 45(3): 139-154, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38709429

RESUMO

In skeletal muscle, Na+,K+-ATPase (NKA), a heterodimeric (α/ß) P-type ATPase, has an essential role in maintenance of Na+ and K+ homeostasis, excitability, and contractility. AMP-activated protein kinase (AMPK), an energy sensor, increases the membrane abundance and activity of NKA in L6 myotubes, but its potential role in regulation of NKA content in skeletal muscle, which determines maximum capacity for Na+ and K+ transport, has not been clearly delineated. We examined whether energy stress and/or AMPK affect expression of NKA subunits in rat L6 and primary human myotubes. Energy stress, induced by glucose deprivation, increased protein content of NKAα1 and NKAα2 in L6 myotubes, while decreasing the content of NKAα1 in human myotubes. Pharmacological AMPK activators (AICAR, A-769662, and diflunisal) modulated expression of NKA subunits, but their effects only partially mimicked those that occurred in response to glucose deprivation, indicating that AMPK does not mediate all effects of energy stress on NKA expression. Gene silencing of AMPKα1/α2 increased protein levels of NKAα1 in L6 myotubes and NKAα1 mRNA levels in human myotubes, while decreasing NKAα2 protein levels in L6 myotubes. Collectively, our results suggest a role for energy stress and AMPK in modulation of NKA expression in skeletal muscle. However, their modulatory effects were not conserved between L6 myotubes and primary human myotubes, which suggests that coupling between energy stress, AMPK, and regulation of NKA expression in vitro depends on skeletal muscle cell model.


Assuntos
Proteínas Quinases Ativadas por AMP , Glucose , Fibras Musculares Esqueléticas , ATPase Trocadora de Sódio-Potássio , ATPase Trocadora de Sódio-Potássio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Glucose/metabolismo , Ratos , Animais , Células Cultivadas
3.
Cell ; 132(3): 375-86, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18267070

RESUMO

Type 2 (non-insulin-dependent) diabetes mellitus is a progressive metabolic disorder arising from genetic and environmental factors that impair beta cell function and insulin action in peripheral tissues. We identified reduced diacylglycerol kinase delta (DGKdelta) expression and DGK activity in skeletal muscle from type 2 diabetic patients. In diabetic animals, reduced DGKdelta protein and DGK kinase activity were restored upon correction of glycemia. DGKdelta haploinsufficiency increased diacylglycerol content, reduced peripheral insulin sensitivity, insulin signaling, and glucose transport, and led to age-dependent obesity. Metabolic flexibility, evident by the transition between lipid and carbohydrate utilization during fasted and fed conditions, was impaired in DGKdelta haploinsufficient mice. We reveal a previously unrecognized role for DGKdelta in contributing to hyperglycemia-induced peripheral insulin resistance and thereby exacerbating the severity of type 2 diabetes. DGKdelta deficiency causes peripheral insulin resistance and metabolic inflexibility. These defects in glucose and energy homeostasis contribute to mild obesity later in life.


Assuntos
Diabetes Mellitus Tipo 2/genética , Diacilglicerol Quinase/metabolismo , Regulação para Baixo , Resistência à Insulina , Adulto , Envelhecimento , Animais , Diacilglicerol Quinase/genética , Diglicerídeos/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Músculo Esquelético/metabolismo , Obesidade , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais
4.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894813

RESUMO

Type 2 diabetes mellitus accounts for about 90% of cases of diabetes and is considered one of the most important problems of our time. Despite a significant number of studies on glucose metabolism, the molecular mechanisms of its regulation in health and disease remain insufficiently studied. That is why non-drug treatment of metabolic disorders is of great relevance, including physical activity. Metabolic changes under the influence of physical activity are very complex and are still difficult to understand. This study aims to deepen the understanding of the effect of physical exercise on metabolic changes in mice with diabetes mellitus. We studied the effect of forced treadmill running on body weight and metabolic parameters in mice with metabolic disorders. We developed a high-fat-diet-induced diabetic model of metabolic disorders. We exposed mice to forced treadmill running for 4 weeks. We determined glucose and insulin levels in the blood plasma biochemically and analyzed Glut-4 and citrate synthase in M. gastrocnemius muscle tissue using Western blotting. The research results show that daily treadmill running has different effects on different age groups of mice with metabolic disorders. In young-age animals, forced running has a more pronounced effect on body weight. At week 12, young obese mice had a 17% decrease in body weight. Body weight did not change in old mice. Moreover, at weeks 14 and 16, the decrease in body weight was more significant in the young mice (by 17%) compared to the old mice (by 6%) (p < 0.05). In older animals, it influences the rate of glucose uptake. At 60 min, the blood glucose in the exercised older mice decreased to 14.46 mmol/L, while the glucose concentration in the non-exercised group remained at 17 mmol/L. By 120 min, in mice subjected to exercise, the blood glucose approached the initial value (6.92 mmol/L) and amounted to 8.35 mmol/L. In the non-exercised group, this difference was 45%. The effects of physical activity depend on the time of day. The greater effect is observed when performing shift training or exercise during the time when animals are passive (light phase). In young mice, light phase training had a significant effect on increasing the content of Glut-4 in muscle tissue (84.3 ± 11.3%, p < 0.05 with control group-59.3 ± 7.8%). In aged mice, shift training caused an increase in the level of Glut-4 in muscle tissue (71.3 ± 4.1%, p < 0.05 with control group-56.4 ± 10,9%). In the group of aged mice, a lower CS level was noticed in all groups in comparison with young mice. It should also be noted that we observed that CS increased during exercise in the group of young mice, especially during light phase training. The CS content in the light phase subgroup (135.8 ± 7.0%) was higher than in the dark phase subgroup (113.3 ± 7.7%) (p = 0.0006). The CS decreased in aged chow-fed mice and increased in the high-fat-fed group. The CS content in the chow diet group (58.2 ± 5.0%) was 38% lower than in the HFD group (94.9 ± 8.8%).


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Condicionamento Físico Animal , Camundongos , Animais , Glicemia/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Diabetes Mellitus Tipo 2/metabolismo , Fotoperíodo , Glucose/metabolismo , Peso Corporal/fisiologia , Dieta Hiperlipídica/efeitos adversos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Camundongos Endogâmicos C57BL
5.
Am J Physiol Cell Physiol ; 321(5): C770-C778, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34495765

RESUMO

Skeletal muscle is an endocrine organ secreting exercise-induced factors (exerkines), which play a pivotal role in interorgan cross talk. Using mass spectrometry (MS)-based proteomics, we characterized the secretome and identified thymosin ß4 (TMSB4X) as the most upregulated secreted protein in the media of contracting C2C12 myotubes. TMSB4X was also acutely increased in the plasma of exercising humans irrespective of the insulin resistance condition or exercise mode. Treatment of mice with TMSB4X did not ameliorate the metabolic disruptions associated with diet induced-obesity, nor did it enhance muscle regeneration in vivo. However, TMSB4X increased osteoblast proliferation and neurite outgrowth, consistent with its WADA classification as a prohibited growth factor. Therefore, we report TMSB4X as a human exerkine with a potential role in cellular cross talk.


Assuntos
Proliferação de Células/efeitos dos fármacos , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Timosina/metabolismo , Timosina/farmacologia , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Humanos , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia , Osteoblastos/patologia , Resistência Física , Proteômica , Transdução de Sinais , Espectrometria de Massas em Tandem
6.
Diabetologia ; 64(7): 1642-1659, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33770195

RESUMO

AIMS/HYPOTHESIS: We sought to determine putative relationships among improved mitochondrial respiration, insulin sensitivity and altered skeletal muscle lipids and metabolite signature in response to combined aerobic and resistance training in women with obesity. METHODS: This study reports a secondary analysis of a randomised controlled trial including additional measures of mitochondrial respiration, skeletal muscle lipidomics, metabolomics and protein content. Women with obesity were randomised into 12 weeks of combined aerobic and resistance exercise training (n = 20) or control (n = 15) groups. Pre- and post-intervention testing included peak oxygen consumption, whole-body insulin sensitivity (intravenous glucose tolerance test), skeletal muscle mitochondrial respiration (high-resolution respirometry), lipidomics and metabolomics (mass spectrometry) and lipid content (magnetic resonance imaging and spectroscopy). Proteins involved in glucose transport (i.e. GLUT4) and lipid turnover (i.e. sphingomyelin synthase 1 and 2) were assessed by western blotting. RESULTS: The original randomised controlled trial showed that exercise training increased insulin sensitivity (median [IQR]; 3.4 [2.0-4.6] to 3.6 [2.4-6.2] x10-5 pmol l-1 min-1), peak oxygen consumption (mean ± SD; 24.9 ± 2.4 to 27.6 ± 3.4 ml kg-1 min-1), and decreased body weight (84.1 ± 8.7 to 83.3 ± 9.7 kg), with an increase in weight (pre intervention, 87.8± 10.9 to post intervention 88.8 ± 11.0 kg) in the control group (interaction p < 0.05). The current study shows an increase in mitochondrial respiration and content in response to exercise training (interaction p < 0.05). The metabolite and lipid signature at baseline were significantly associated with mitochondrial respiratory capacity (p < 0.05) but were not associated with whole-body insulin sensitivity or GLUT4 protein content. Exercise training significantly altered the skeletal muscle lipid profile, increasing specific diacylglycerol(32:2) and ceramide(d18:1/24:0) levels, without changes in other intermediates or total content of diacylglycerol and ceramide. The total content of cardiolipin, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) increased with exercise training with a decrease in the PC:PE ratios containing 22:5 and 20:4 fatty acids. These changes were associated with content-driven increases in mitochondrial respiration (p < 0.05), but not with the increase in whole-body insulin sensitivity or GLUT4 protein content. Exercise training increased sphingomyelin synthase 1 (p < 0.05), with no change in plasma-membrane-located sphingomyelin synthase 2. CONCLUSIONS/INTERPRETATION: The major findings of our study were that exercise training altered specific intramuscular lipid intermediates, associated with content-driven increases in mitochondrial respiration but not whole-body insulin sensitivity. This highlights the benefits of exercise training and presents putative target pathways for preventing lipotoxicity in skeletal muscle, which is typically associated with the development of type 2 diabetes.


Assuntos
Exercício Físico/fisiologia , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade , Fosfolipídeos/metabolismo , Adulto , Respiração Celular , Feminino , Seguimentos , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Masculino , Obesidade/metabolismo , Obesidade/patologia , Obesidade/terapia , Adulto Jovem
7.
Diabetologia ; 64(9): 2077-2091, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34131782

RESUMO

AIMS/HYPOTHESIS: Increased levels of branched-chain amino acids (BCAAs) are associated with type 2 diabetes pathogenesis. However, most metabolomic studies are limited to an analysis of plasma metabolites under fasting conditions, rather than the dynamic shift in response to a metabolic challenge. Moreover, metabolomic profiles of peripheral tissues involved in glucose homeostasis are scarce and the transcriptomic regulation of genes involved in BCAA catabolism is partially unknown. This study aimed to identify differences in circulating and skeletal muscle BCAA levels in response to an OGTT in individuals with normal glucose tolerance (NGT) or type 2 diabetes. Additionally, transcription factors involved in the regulation of the BCAA gene set were identified. METHODS: Plasma and vastus lateralis muscle biopsies were obtained from individuals with NGT or type 2 diabetes before and after an OGTT. Plasma and quadriceps muscles were harvested from skeletal muscle-specific Ppargc1a knockout and transgenic mice. BCAA-related metabolites and genes were assessed by LC-MS/MS and quantitative RT-PCR, respectively. Small interfering RNA and adenovirus-mediated overexpression techniques were used in primary human skeletal muscle cells to study the role of PPARGC1A and ESRRA in the expression of the BCAA gene set. Radiolabelled leucine was used to analyse the impact of oestrogen-related receptor α (ERRα) knockdown on leucine oxidation. RESULTS: Impairments in BCAA catabolism in people with type 2 diabetes under fasting conditions were exacerbated after a glucose load. Branched-chain keto acids were reduced 37-56% after an OGTT in the NGT group, whereas no changes were detected in individuals with type 2 diabetes. These changes were concomitant with a stronger correlation with glucose homeostasis biomarkers and downregulated expression of branched-chain amino acid transaminase 2, branched-chain keto acid dehydrogenase complex subunits and 69% of downstream BCAA-related genes in skeletal muscle. In primary human myotubes overexpressing peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α, encoded by PPARGC1A), 61% of the analysed BCAA genes were upregulated, while 67% were downregulated in the quadriceps of skeletal muscle-specific Ppargc1a knockout mice. ESRRA (encoding ERRα) silencing completely abrogated the PGC-1α-induced upregulation of BCAA-related genes in primary human myotubes. CONCLUSIONS/INTERPRETATION: Metabolic inflexibility in type 2 diabetes impacts BCAA homeostasis and attenuates the decrease in circulating and skeletal muscle BCAA-related metabolites after a glucose challenge. Transcriptional regulation of BCAA genes in primary human myotubes via PGC-1α is ERRα-dependent.


Assuntos
Diabetes Mellitus Tipo 2 , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Cromatografia Líquida , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Estrogênio , Espectrometria de Massas em Tandem , Receptor ERRalfa Relacionado ao Estrogênio
8.
J Membr Biol ; 254(5-6): 531-548, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748042

RESUMO

Na+,K+-ATPase (NKA) is essential for maintenance of cellular and whole-body water and ion homeostasis. In the kidney, a major site of ion transport, NKA consumes ~ 50% of ATP, indicating a tight coordination of NKA and energy metabolism. AMP-activated protein kinase (AMPK), a cellular energy sensor, regulates NKA by modulating serine phosphorylation of the α1-subunit, but whether it modulates other important regulatory phosphosites, such as Tyr10, is unknown. Using human kidney (HK-2) cells, we determined that the phosphorylation of Tyr10 was stimulated by the epidermal growth factor (EGF), which was opposed by inhibitors of Src kinases (PP2), tyrosine kinases (genistein), and EGF receptor (EGFR, gefitinib). AMPK activators AICAR and A-769662 suppressed the EGF-stimulated phosphorylation of EGFR (Tyr1173) and NKAα1 at Tyr10. The phosphorylation of Src (Tyr416) was unaltered by AICAR and increased by A-769662. Conversely, ouabain (100 nM), a pharmacological NKA inhibitor and a putative adrenocortical hormone, enhanced the EGF-stimulated Tyr10 phosphorylation without altering the phosphorylation of EGFR (Tyr1173) or Src (Tyr416). Ouabain (100-1000 nM) increased the ADP:ATP ratio, while it suppressed the lactate production and the oxygen consumption rate in a dose-dependent manner. Treatment with ouabain or gene silencing of NKAα1 or NKAα3 subunit did not activate AMPK. In summary, AMPK activators and ouabain had antagonistic effects on the phosphorylation of NKAα1 at Tyr10 in cultured HK-2 cells, which implicates a role for Tyr10 in coordinated regulation of NKA-mediated ion transport and energy metabolism.


Assuntos
Rim , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Íons/metabolismo , Rim/metabolismo , Ouabaína/farmacologia , Fosforilação/efeitos dos fármacos , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo
9.
J Muscle Res Cell Motil ; 42(1): 77-97, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33398789

RESUMO

AMP-activated protein kinase (AMPK) is a cellular energy gauge and a major regulator of cellular energy homeostasis. Once activated, AMPK stimulates nutrient uptake and the ATP-producing catabolic pathways, while it suppresses the ATP-consuming anabolic pathways, thus helping to maintain the cellular energy balance under energy-deprived conditions. As much as ~ 20-25% of the whole-body ATP consumption occurs due to a reaction catalysed by Na+,K+-ATPase (NKA). Being the single most important sink of energy, NKA might seem to be an essential target of the AMPK-mediated energy saving measures, yet NKA is vital for maintenance of transmembrane Na+ and K+ gradients, water homeostasis, cellular excitability, and the Na+-coupled transport of nutrients and ions. Consistent with the model that AMPK regulates ATP consumption by NKA, activation of AMPK in the lung alveolar cells stimulates endocytosis of NKA, thus suppressing the transepithelial ion transport and the absorption of the alveolar fluid. In skeletal muscles, contractions activate NKA, which opposes a rundown of transmembrane ion gradients, as well as AMPK, which plays an important role in adaptations to exercise. Inhibition of NKA in contracting skeletal muscle accentuates perturbations in ion concentrations and accelerates development of fatigue. However, different models suggest that AMPK does not inhibit or even stimulates NKA in skeletal muscle, which appears to contradict the idea that AMPK maintains the cellular energy balance by always suppressing ATP-consuming processes. In this short review, we examine the role of AMPK in regulation of NKA in skeletal muscle and discuss the apparent paradox of AMPK-stimulated ATP consumption.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina Trifosfatases/metabolismo , Íons/metabolismo , Músculo Esquelético/metabolismo , Humanos
10.
Am J Physiol Cell Physiol ; 318(5): C1030-C1041, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293933

RESUMO

Na,K-ATPase is a membrane transporter that is critically important for skeletal muscle function. Mdx and Bla/J mice are the experimental models of Duchenne muscular dystrophy and dysferlinopathy that are known to differ in the molecular mechanism of the pathology. This study examines the function of α1- and α2-Na,K-ATPase isozymes in respiratory diaphragm and postural soleus muscles from mdx and Bla/J mice compared with control С57Bl/6 mice. In diaphragm muscles, the motor endplate structure was severely disturbed (manifested by defragmentation) in mdx mice only. The endplate membrane of both Bla/J and mdx mice was depolarized due to specific loss of the α2-Na,K-ATPase electrogenic activity and its decreased membrane abundance. Total FXYD1 subunit (modulates Na,K-ATPase activity) abundance was decreased in both mouse models. However, the α2-Na,K-ATPase protein content as well as mRNA expression were specifically and significantly reduced only in mdx mice. The endplate membrane cholesterol redistribution was most pronounced in mdx mice. Soleus muscles from Bla/J and mdx mice demonstrated reduction of the α2-Na,K-ATPase membrane abundance and mRNA expression similar to the diaphragm muscles. In contrast to diaphragm, the α2-Na,K-ATPase protein content was altered in both Bla/J and mdx mice; membrane cholesterol re-distribution was not observed. Thus, the α2-Na,K-ATPase is altered in both Bla/J and mdx mouse models of chronic muscle pathology. However, despite some similarities, the α2-Na,K-ATPase and cholesterol abnormalities are more pronounced in mdx mice.


Assuntos
Proteínas de Membrana/genética , Distrofias Musculares/genética , Fosfoproteínas/genética , ATPase Trocadora de Sódio-Potássio/genética , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Colesterol/genética , Colesterol/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos mdx , Placa Motora/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Isoformas de Proteínas/genética , RNA Mensageiro/genética
11.
Am J Physiol Cell Physiol ; 318(3): C615-C626, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31825657

RESUMO

Rat L6, mouse C2C12, and primary human skeletal muscle cells (HSMCs) are commonly used to study biological processes in skeletal muscle, and experimental data on these models are abundant. However, consistently matched experimental data are scarce, and comparisons between the different cell types and adult tissue are problematic. We hypothesized that metabolic differences between these cellular models may be reflected at the mRNA level. Publicly available data sets were used to profile mRNA levels in myotubes and skeletal muscle tissues. L6, C2C12, and HSMC myotubes were assessed for proliferation, glucose uptake, glycogen synthesis, mitochondrial activity, and substrate oxidation, as well as the response to in vitro contraction. Transcriptomic profiling revealed that mRNA of genes coding for actin and myosin was enriched in C2C12, whereas L6 myotubes had the highest levels of genes encoding glucose transporters and the five complexes of the mitochondrial electron transport chain. Consistently, insulin-stimulated glucose uptake and oxidative capacity were greatest in L6 myotubes. Insulin-induced glycogen synthesis was highest in HSMCs, but C2C12 myotubes had higher baseline glucose oxidation. All models responded to electrical pulse stimulation-induced glucose uptake and gene expression but in a slightly different manner. Our analysis reveals a great degree of heterogeneity in the transcriptomic and metabolic profiles of L6, C2C12, or primary human myotubes. Based on these distinct signatures, we provide recommendations for the appropriate use of these models depending on scientific hypotheses and biological relevance.


Assuntos
Metabolismo Energético/fisiologia , Perfilação da Expressão Gênica/métodos , Células Musculares/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Transcriptoma/fisiologia , Adulto , Animais , Linhagem Celular , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Músculo Esquelético/citologia , Ratos , Especificidade da Espécie
12.
FASEB J ; 33(9): 10551-10562, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31225998

RESUMO

During exercise, skeletal muscles release cytokines, peptides, and metabolites that exert autocrine, paracrine, or endocrine effects on glucose homeostasis. In this study, we investigated the effects of secreted protein acidic and rich in cysteine (SPARC), an exercise-responsive myokine, on glucose metabolism in human and mouse skeletal muscle. SPARC-knockout mice showed impaired systemic metabolism and reduced phosphorylation of AMPK and protein kinase B in skeletal muscle. Treatment of SPARC-knockout mice with recombinant SPARC improved glucose tolerance and concomitantly activated AMPK in skeletal muscle. These effects were dependent on AMPK-γ3 because SPARC treatment enhanced skeletal muscle glucose uptake in wild-type mice but not in AMPK-γ3-knockout mice. SPARC strongly interacted with the voltage-dependent calcium channel, and inhibition of calcium-dependent signaling prevented SPARC-induced AMPK phosphorylation in human and mouse myotubes. Finally, chronic SPARC treatment improved systemic glucose tolerance and AMPK signaling in skeletal muscle of high-fat diet-induced obese mice, highlighting the efficacy of SPARC treatment in the management of metabolic diseases. Thus, our findings suggest that SPARC treatment mimics the effects of exercise on glucose tolerance by enhancing AMPK-dependent glucose uptake in skeletal muscle.-Aoi, W., Hirano, N., Lassiter, D. G., Björnholm, M., Chibalin, A. V., Sakuma, K., Tanimura, Y., Mizushima, K., Takagi, T., Naito, Y., Zierath, J. R., Krook, A. Secreted protein acidic and rich in cysteine (SPARC) improves glucose tolerance via AMP-activated protein kinase activation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Intolerância à Glucose/prevenção & controle , Glucose/metabolismo , Músculo Esquelético/patologia , Obesidade/prevenção & controle , Osteonectina/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Fosforilação , Transdução de Sinais
13.
Curr Top Membr ; 83: 315-351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31196608

RESUMO

Na+-K+-ATPase, an α/ß heterodimer, is an ancient enzyme that maintains Na+ and K+ gradients, thus preserving cellular ion homeostasis. In multicellular organisms, this basic housekeeping function is integrated to fulfill the needs of specialized organs and preserve whole-body homeostasis. In vertebrates, Na+-K+-ATPase is essential for many fundamental physiological processes, such as nerve conduction, muscle contraction, nutrient absorption, and urine excretion. During vertebrate evolution, three key developments contributed to diversification and integration of Na+-K+-ATPase functions. Generation of novel α- and ß-subunits led to formation of multiple Na+-K+-ATPase isoenyzmes with distinct functional characteristics. Development of a complex endocrine system enabled efficient coordination of diverse Na+-K+-ATPase functions. Emergence of FXYDs, small transmembrane proteins that regulate Na+-K+-ATPase, opened new ways to modulate its function. FXYDs are a vertebrate innovation and an important site of hormonal action, suggesting they played an especially prominent role in evolving interaction between Na+-K+-ATPase and the endocrine system in vertebrates.


Assuntos
Evolução Biológica , Hormônios/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Humanos , ATPase Trocadora de Sódio-Potássio/química
14.
Proteomics ; 18(5-6): e1700375, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29350465

RESUMO

Skeletal muscle insulin resistance, an early metabolic defect in the pathogenesis of type 2 diabetes (T2D), may be a cause or consequence of altered protein expression profiles. Proteomics technology offers enormous promise to investigate molecular mechanisms underlying pathologies, however, the analysis of skeletal muscle is challenging. Using state-of-the-art multienzyme digestion and filter-aided sample preparation (MED-FASP) and a mass spectrometry (MS)-based workflow, we performed a global proteomics analysis of skeletal muscle from leptin-deficient, obese, insulin resistant (ob/ob) and lean mice in mere two fractions in a short time (8 h per sample). We identified more than 6000 proteins with 118 proteins differentially regulated in obesity. This included protein kinases, phosphatases, and secreted and fiber type associated proteins. Enzymes involved in lipid metabolism in skeletal muscle from ob/ob mice were increased, providing evidence against reduced fatty acid oxidation in lipid-induced insulin resistance. Mitochondrial and peroxisomal proteins, as well as components of pyruvate and lactate metabolism, were increased. Finally, the skeletal muscle proteome from ob/ob mice displayed a shift toward the "slow fiber type." This detailed characterization of an obese rodent model of T2D demonstrates an efficient workflow for skeletal muscle proteomics, which may easily be adapted to other complex tissues.


Assuntos
Resistência à Insulina , Leptina/fisiologia , Fibras Musculares Esqueléticas/química , Músculo Esquelético/metabolismo , Proteoma/análise , Magreza , Animais , Masculino , Camundongos , Camundongos Obesos , Fibras Musculares Esqueléticas/metabolismo
15.
Am J Physiol Cell Physiol ; 315(6): C803-C817, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230919

RESUMO

AMP-activated kinase (AMPK) is a major regulator of energy metabolism and a promising target for development of new treatments for type 2 diabetes and cancer. 5-Aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR), an adenosine analog, is a standard positive control for AMPK activation in cell-based assays. Some broadly used cell culture media, such as minimal essential medium α (MEMα), contain high concentrations of adenosine and other nucleosides. We determined whether such media alter AICAR action in skeletal muscle and cancer cells. In nucleoside-free media, AICAR stimulated AMPK activation, increased glucose uptake, and suppressed cell proliferation. Conversely, these effects were blunted or completely blocked in MEMα that contains nucleosides. Addition of adenosine or 2'-deoxyadenosine to nucleoside-free media also suppressed AICAR action. MEMα with nucleosides blocked AICAR-stimulated AMPK activation even in the presence of methotrexate, which normally markedly enhances AICAR action by reducing its intracellular clearance. Other common media components, such as vitamin B-12, vitamin C, and α-lipoic acid, had a minor modulatory effect on AICAR action. Our findings show that nucleoside-containing media, commonly used in AMPK research, block action of the most widely used pharmacological AMPK activator AICAR. Results of cell-based assays in which AICAR is used for AMPK activation therefore critically depend on media formulation. Furthermore, our findings highlight a role for extracellular nucleosides and nucleoside transporters in regulation of AMPK activation.


Assuntos
Diabetes Mellitus Tipo 2/genética , Metabolismo Energético/genética , Neoplasias/genética , Proteínas Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Adenosina/genética , Adenosina/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Meios de Cultura/química , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Glucose/metabolismo , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Nucleosídeos/biossíntese , Nucleosídeos/genética , Proteínas Quinases/metabolismo , Ribonucleotídeos/biossíntese , Ribonucleotídeos/genética , Ácido Tióctico/química , Ácido Tióctico/farmacologia , Vitamina B 12/química , Vitamina B 12/farmacologia
16.
J Lipid Res ; 59(2): 273-282, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233919

RESUMO

Conversion of diacylglycerol to phosphatidic acid is mediated by diacylglycerol kinases (DGKs), with DGKα specifically linked to adaptive immune responses. We determined the role of DGKα in obesity and inflammatory responses to a high-fat diet (HFD). DGKα KO and WT littermates were either a) chow-fed, b) HFD-fed for 12 weeks (Long-Term HFD), or c) HFD-fed for 3 days (Acute HFD). Body weight/composition, oxygen consumption, food intake, and glucose tolerance was unaltered between chow-fed DGKα KO and WT mice. Insulin concentration during the intraperitoneal glucose tolerance (IPGT) test was elevated in chow-fed DGKα KO mice, suggesting mild insulin resistance. Insulin concentration during the IPGT test was reduced in Long-Term HFD-fed DGKα KO mice, suggesting a mild enhancement in insulin sensitivity. Acute HFD increased hormone sensitive lipase protein abundance and altered expression of interleukin 1ß mRNA, an inflammatory marker in perigonadal adipose tissue of DGKα KO mice. In conclusion, DGKα ablation is associated with mild alterations in insulin sensitivity. However, DGKα is dispensable for whole body insulin-mediated glucose uptake, hepatic glucose production, and energy homeostasis. Our results suggest DGKα aids in modulating the early immune response of adipose tissue following an acute exposure to HFD, possibly through modulation of acute T-cell action.


Assuntos
Tecido Adiposo/metabolismo , Diacilglicerol Quinase/deficiência , Dieta Hiperlipídica/efeitos adversos , Inflamação/metabolismo , Animais , Biomarcadores/metabolismo , Diacilglicerol Quinase/metabolismo , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Homeostase , Camundongos , Camundongos Knockout
17.
Diabetologia ; 61(2): 424-432, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29022062

RESUMO

AIMS/HYPOTHESIS: Insulin-mediated signals and AMP-activated protein kinase (AMPK)-mediated signals are activated in response to physiological conditions that represent energy abundance and shortage, respectively. Focal adhesion kinase (FAK) is implicated in insulin signalling and cancer progression in various non-muscle cell types and plays a regulatory role during skeletal muscle differentiation. The role of FAK in skeletal muscle in relation to insulin stimulation or AMPK activation is unknown. We examined the effects of insulin or AMPK activation on FAK phosphorylation in human skeletal muscle and the direct role of FAK on glucose and lipid metabolism. We hypothesised that insulin treatment and AMPK activation would have opposing effects on FAK phosphorylation and that gene silencing of FAK would alter metabolism. METHODS: Human muscle was treated with insulin or the AMPK-activating compound 5-aminoimadazole-4-carboxamide ribonucleotide (AICAR) to determine FAK phosphorylation and glucose transport. Primary human skeletal muscle cells were used to study the effects of insulin or AICAR treatment on FAK signalling during serum starvation, as well as to determine the metabolic consequences of silencing the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397 in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated by increased p-ACCS222, concomitant with reduced p-FAKY397. FAK signalling was reduced owing to serum starvation and AICAR treatment as demonstrated by reduced p-paxillinY118. Silencing PTK2 in primary human skeletal muscle cells increased palmitate oxidation and reduced glycogen synthesis. CONCLUSIONS/INTERPRETATION: AMPK regulates FAK signalling in skeletal muscle. Moreover, siRNA-mediated FAK knockdown enhances lipid oxidation while impairing glycogen synthesis in skeletal muscle. Further exploration of the interaction between AMPK and FAK may lead to novel therapeutic strategies for diabetes and other chronic conditions associated with an altered metabolic homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Músculo Esquelético/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Biópsia , Células Cultivadas , Feminino , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
18.
J Cell Physiol ; 233(10): 6329-6336, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29719042

RESUMO

Motor endplates naturally undergo continual morphological changes that are altered in response to changes in neuromuscular activity. This study examines the consequences of acute (6-12 hr) disuse following hindlimb suspension on rat soleus muscle endplate structural stability. We identify early changes in several key signaling events including markers of protein kinase activation, AMPK phosphorylation and autophagy markers which may play a role in endplate remodeling. Acute disuse does not change endplate fragmentation, however, it decreases both the individual fragments and the total endplate area. This decrease was accompanied by an increase in the mean fluorescence intensity from the nicotinic acetylcholine receptors which compensate the endplate area loss. Muscle disuse decreased phosphorylation of AMPK and its substrate ACC, and stimulated mTOR controlled protein synthesis pathway and stimulated autophagy. Our findings provide evidence that changes in endplate stability are accompanied by reduced AMPK phosphorylation and an increase in autophagy markers, and these changes are evident within hours of onset of skeletal muscle disuse.


Assuntos
Elevação dos Membros Posteriores/fisiologia , Placa Motora/genética , Proteínas Quinases/genética , Serina-Treonina Quinases TOR/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagia/fisiologia , Membro Posterior/metabolismo , Membro Posterior/fisiologia , Placa Motora/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Fosforilação , Proteínas Quinases/biossíntese , Ratos , Receptores Nicotínicos/genética , Transdução de Sinais/genética
19.
Am J Physiol Cell Physiol ; 312(5): C627-C637, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28274922

RESUMO

Marked loss of skeletal muscle mass occurs under various conditions of disuse, but the molecular and cellular mechanisms leading to atrophy are not completely understood. We investigate early molecular events that might play a role in skeletal muscle remodeling during mechanical unloading (disuse). The effects of acute (6-12 h) hindlimb suspension on the soleus muscles from adult rats were examined. The integrity of plasma membrane lipid rafts was tested utilizing cholera toxin B subunit or fluorescent sterols. In addition, resting intracellular Ca2+ level was analyzed. Acute disuse disturbed the plasma membrane lipid-ordered phase throughout the sarcolemma and was more pronounced in junctional membrane regions. Ouabain (1 µM), which specifically inhibits the Na-K-ATPase α2 isozyme in rodent skeletal muscles, produced similar lipid raft changes in control muscles but was ineffective in suspended muscles, which showed an initial loss of α2 Na-K-ATPase activity. Lipid rafts were able to recover with cholesterol supplementation, suggesting that disturbance results from cholesterol loss. Repetitive nerve stimulation also restores lipid rafts, specifically in the junctional sarcolemma region. Disuse locally lowered the resting intracellular Ca2+ concentration only near the neuromuscular junction of muscle fibers. Our results provide evidence to suggest that the ordering of lipid rafts strongly depends on motor nerve input and may involve interactions with the α2 Na-K-ATPase. Lipid raft disturbance, accompanied by intracellular Ca2+ dysregulation, is among the earliest remodeling events induced by skeletal muscle disuse.


Assuntos
Cálcio/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Músculo Esquelético/fisiopatologia , Transtornos Musculares Atróficos/fisiopatologia , Animais , Sinalização do Cálcio , Elevação dos Membros Posteriores , Masculino , Músculo Esquelético/patologia , Transtornos Musculares Atróficos/patologia , Ratos , Ratos Wistar
20.
J Lipid Res ; 58(5): 907-915, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28246337

RESUMO

Diacylglycerol kinases (DGKs) catalyze the phosphorylation and conversion of diacylglycerol (DAG) into phosphatidic acid. DGK isozymes have unique primary structures, expression patterns, subcellular localizations, regulatory mechanisms, and DAG preferences. DGKε has a hydrophobic segment that promotes its attachment to membranes and shows substrate specificity for DAG with an arachidonoyl acyl chain in the sn-2 position of the substrate. We determined the role of DGKε in the regulation of energy and glucose homeostasis in relation to diet-induced insulin resistance and obesity using DGKε-KO and wild-type mice. Lipidomic analysis revealed elevated unsaturated and saturated DAG species in skeletal muscle of DGKε KO mice, which was paradoxically associated with increased glucose tolerance. Although skeletal muscle insulin sensitivity was unaltered, whole-body respiratory exchange ratio was reduced, and abundance of mitochondrial markers was increased, indicating a greater reliance on fat oxidation and intracellular lipid metabolism in DGKε KO mice. Thus, the increased intracellular lipids in skeletal muscle from DGKε KO mice may undergo rapid turnover because of increased mitochondrial function and lipid oxidation, rather than storage, which in turn may preserve insulin sensitivity. In conclusion, DGKε plays a role in glucose and energy homeostasis by modulating lipid metabolism in skeletal muscle.


Assuntos
Diacilglicerol Quinase/deficiência , Glucose/metabolismo , Metabolismo dos Lipídeos , Animais , Composição Corporal , Diacilglicerol Quinase/genética , Metabolismo Energético , Técnicas de Inativação de Genes , Teste de Tolerância a Glucose , Homeostase , Fígado/metabolismo , Masculino , Camundongos , Camundongos Obesos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA