Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(20): 2966-2980, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37522762

RESUMO

Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.


Assuntos
Esclerose Lateral Amiotrófica , Herpesvirus Humano 8 , Neuroblastoma , Humanos , Herpesvirus Humano 8/metabolismo , Proteômica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
2.
Angew Chem Int Ed Engl ; : e202408163, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880765

RESUMO

While protein aggregation is a hallmark of many neurodegenerative diseases, acquiring structural information on protein aggregates inside live cells remains challenging. Traditional microscopy does not provide structural information on protein systems. Routinely used fluorescent protein tags, such as Green Fluorescent Protein (GFP), might perturb native structures. Here, we report a counter-propagating mid-infrared photothermal imaging approach enabling mapping of secondary structure of protein aggregates in live cells modeling Huntington's disease. By comparing mid-infrared photothermal spectra of label-free and GFP-tagged huntingtin inclusions, we demonstrate that GFP fusions indeed perturb the secondary structure of aggregates. By implementing spectra with small spatial step for dissecting spectral features within sub-micrometer distances, we reveal that huntingtin inclusions partition into a ß-sheet-rich core and a ɑ-helix-rich shell. We further demonstrate that this structural partition exists only in cells with the [RNQ+] prion state, while [rnq-] cells only carry smaller ß-rich non-toxic aggregates. Collectively, our methodology has the potential to unveil detailed structural information on protein assemblies in live cells, enabling high-throughput structural screenings of macromolecular assemblies.

3.
BMC Biol ; 18(1): 35, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216777

RESUMO

The traditional view of protein aggregation as being strictly disease-related has been challenged by many examples of cellular aggregates that regulate beneficial biological functions. When coupled with the emerging view that many regulatory proteins undergo phase separation to form dynamic cellular compartments, it has become clear that supramolecular assembly plays wide-ranging and critical roles in cellular regulation. This presents opportunities to develop new tools to probe and illuminate this biology, and to harness the unique properties of these self-assembling systems for synthetic biology for the purposeful manipulation of biological function.


Assuntos
Proteínas/química , Biologia Sintética
4.
Biophys J ; 110(11): 2361-2366, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27276254

RESUMO

Expansions of polyglutamine (polyQ) tracts in nine different proteins cause a family of neurodegenerative disorders called polyQ diseases. Because polyQ tracts are potential therapeutic targets for these pathologies there is great interest in characterizing the conformations that they adopt and in understanding how their aggregation behavior is influenced by the sequences flanking them. We used solution NMR to study at single-residue resolution a 156-residue proteolytic fragment of the androgen receptor that contains a polyQ tract associated with the disease spinobulbar muscular atrophy, also known as Kennedy disease. Our findings indicate that a Leu-rich region preceding the polyQ tract causes it to become α-helical and appears to protect the protein against aggregation, which represents a new, to our knowledge, mechanism by which sequence context can minimize the deleterious properties of these repetitive regions. Our results have implications for drug discovery for polyQ diseases because they suggest that the residues flanking these repetitive sequences may represent viable therapeutic targets.


Assuntos
Peptídeos/genética , Peptídeos/metabolismo , Sequência de Aminoácidos , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Dicroísmo Circular , Difusão Dinâmica da Luz , Escherichia coli , Humanos , Cinética , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica/genética , Estrutura Secundária de Proteína/genética , Espectroscopia de Prótons por Ressonância Magnética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
5.
Methods Mol Biol ; 2141: 211-231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32696359

RESUMO

High solvent exposure of certain sequences located in intrinsically disordered regions (IDRs) may eventually lead to aggregation, as is the case for some low-complexity regions (LCRs) and short linear motifs (SLiMs). In particular, polyglutamine (polyQ) tracts are LCRs of variable length highly enriched in glutamine residues. They are common in transcription factors, and their length can have an impact on transcriptional activity. In nine proteins, polyQ tract expansions beyond specific thresholds cause nine neurodegenerative diseases, and aggregates formed by the protein harboring the polyQ tract can be detected in affected individuals. A structural characterization of polyQ proteins in their monomeric form is key to understand how their expansion can affect their aggregation propensity. In this regard, nuclear magnetic resonance (NMR) spectroscopy can provide high-resolution structural information. Here, we present a protocol to prepare monomeric samples of isotope-enriched short helical polyQ peptides based on the sequence of the androgen receptor (AR) suitable for NMR characterization and suggest different ways to adapt it for the production and monomerization of other relatively short IDR sequences and SLiMs.


Assuntos
Isótopos/metabolismo , Peptídeos/metabolismo , Agregados Proteicos , Proteínas Recombinantes/biossíntese , Sequência de Aminoácidos , Sequência de Bases , Escherichia coli/genética , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Transformação Genética
6.
Nat Commun ; 10(1): 2034, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048691

RESUMO

Polyglutamine (polyQ) tracts are regions of low sequence complexity frequently found in transcription factors. Tract length often correlates with transcriptional activity and expansion beyond specific thresholds in certain human proteins is the cause of polyQ disorders. To study the structural basis of the association between tract length, transcriptional activity and disease, we addressed how the conformation of the polyQ tract of the androgen receptor, associated with spinobulbar muscular atrophy (SBMA), depends on its length. Here we report that this sequence folds into a helical structure stabilized by unconventional hydrogen bonds between glutamine side chains and main chain carbonyl groups, and that its helicity directly correlates with tract length. These unusual hydrogen bonds are bifurcate with the conventional hydrogen bonds stabilizing α-helices. Our findings suggest a plausible rationale for the association between polyQ tract length and androgen receptor transcriptional activity and have implications for establishing the mechanistic basis of SBMA.


Assuntos
Atrofia Bulboespinal Ligada ao X/genética , Peptídeos/química , Conformação Proteica em alfa-Hélice/genética , Receptores Androgênicos/química , Fatores de Transcrição/química , Atrofia Bulboespinal Ligada ao X/patologia , Dicroísmo Circular , Glutamina/química , Humanos , Hidrogênio/química , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Mutação , Agregados Proteicos/genética , Receptores Androgênicos/genética , Fatores de Transcrição/genética
8.
Nat Commun ; 10(1): 3562, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395886

RESUMO

Molecular chaperones such as Hsp40 and Hsp70 hold the androgen receptor (AR) in an inactive conformation. They are released in the presence of androgens, enabling transactivation and causing the receptor to become aggregation-prone. Here we show that these molecular chaperones recognize a region of the AR N-terminal domain (NTD), including a FQNLF motif, that interacts with the AR ligand-binding domain (LBD) upon activation. This suggests that competition between molecular chaperones and the LBD for the FQNLF motif regulates AR activation. We also show that, while the free NTD oligomerizes, binding to Hsp70 increases its solubility. Stabilizing the NTD-Hsp70 interaction with small molecules reduces AR aggregation and promotes its degradation in cellular and mouse models of the neuromuscular disorder spinal bulbar muscular atrophy. These results help resolve the mechanisms by which molecular chaperones regulate the balance between AR aggregation, activation and quality control.


Assuntos
Androgênios/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Receptores Androgênicos/metabolismo , Animais , Técnicas de Introdução de Genes , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Ressonância Magnética Nuclear Biomolecular , Agregados Proteicos , Domínios Proteicos , Multimerização Proteica , Receptores Androgênicos/química , Receptores Androgênicos/genética , Solubilidade
9.
Oncol Lett ; 12(1): 767-771, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347214

RESUMO

Cancer cells use two major types of movement: Mesenchymal, which is typical of cells of mesenchymal origin and depends on matrix metalloproteinase (MMP) activity, and amoeboid, which is characteristic of cells with a rounded shape and relies on the activity of Rho-associated kinase (ROCK). The present authors previously demonstrated that, during neoplastic transformation, telomerase-immortalized human fibroblasts (cen3tel cells) acquired a ROCK-dependent/MMP independent mechanism of invasion, mediated by the downregulation of the ROCK cellular inhibitor Round (Rnd)3/RhoE. In the present study, cen3tel transformation was also demonstrated to be paralleled by downregulation of Snail, a major determinant of the mesenchymal movement. To test whether Snail levels could determine the type of movement adopted by mesenchymal tumor cells, Snail was ectopically expressed in tumorigenic cells. It was observed that ectopic Snail did not increase the levels of typical mesenchymal markers, but induced cells to adopt an MMP-dependent mechanism of invasion. In cells expressing ectopic Snail, invasion became sensitive to the MMP inhibitor Ro 28-2653 and insensitive to the ROCK inhibitor Y27632, suggesting that, once induced by Snail, the mesenchymal movement prevails over the amoeboid one. Snail-expressing cells had a more aggressive behavior in vivo, and exhibited increased tumor growth rate and metastatic ability. These results confirm the high plasticity of cancer cells, which can adopt different types of movement in response to changes in the expression of specific genes. Furthermore, the present findings indicate that Rnd3 and Snail are possible regulators of the type of invasion mechanism adopted by mesenchymal tumor cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA