Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 42(17): 3435-3438, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957056

RESUMO

We reveal a 2D-3D switchable lens unit that is based on a polarization-sensitive microlens array and a polarization selector unit made of an electrically suppressed helix ferroelectric liquid crystal (ESHFLC) cell. The ESHFLCs offer a high contrast ratio (∼10k∶1) between the crossed polarizers at a low applied electric field (∼1.7 V/µm) with a small switching time (<50 µs). A special driving scheme, to switch between a 2D and 3D mode, has been developed to avoid unwanted issues related to DC accumulation in the ferroelectric liquid crystal without affecting its optical quality. The proposed lens unit is characterized by low power consumption, ultrafast response, and 3D crosstalk <5%, and can therefore find application in TVs, cell phones, etc.

2.
Opt Lett ; 41(24): 5668-5671, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973485

RESUMO

In this Letter, we disclose a Dammann grating (DG) based on the hybrid photo-aligned nematic liquid crystals (LCs). The LC cell is composed of two substrates, wherein the first substrate is treated to provide the homeotropic alignment, and the other substrate is set to provide an in-plane, patterned alignment with a mutually orthogonal easy axis in the neighboring alignment domains. Thus, the fabricated polarization independent DG generates an optical array of equally distributed energy, which is characterized by a diffraction efficiency of more than 58%, a response time <1 ms, and the driving voltage 3 V/µm. Furthermore, the optically active alignment layer provides the optical tunability and reconfigurability for the proposed DG. With these advantageous parameters, these DGs can be applied in modern applications.

3.
Opt Express ; 22(11): 13138-45, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24921509

RESUMO

A bistable negative lens with a large aperture size (~10mm) by integrating a polarization switch of ferroelectric liquid crystals (FLCs) with a passively anisotropic focusing element is demonstrated. The proposed lens not only exhibits electrically tunable bistability but also fast response time of sub-milliseconds. The tunable lens power is from 0 to -1.74 Diopters. The electro-optical properties and imaging performances are demonstrated. The impact of this study is to provide a solution of electrically bistable liquid crystal lenses for the applications of portable devices, wearable devices and colored ophthalmic lenses.


Assuntos
Eletrônica/instrumentação , Lentes , Cristais Líquidos/química , Anisotropia , Desenho de Equipamento
4.
Sci Rep ; 8(1): 4251, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523829

RESUMO

Photobiomodulation or low-level light therapy (LLLT) has extensive applications based on light-induced effects in biological systems. Photobiomodulation remains controversial because of a poorly understood biochemical mechanism limited by the well-known biphasic dose response or Arndt-Schulz curve. The Arndt-Schulz curve states that an optimal dose of light is a key factor for realizing a therapeutic effect. In this report, we demonstrate a tunable optical system for photobiomodulation to aid physicians in overcoming the constraints of light due to biphasic dose response. The tunable optical system is based on a white light-emitting diode and four liquid crystal (LC) photonic devices: three LC phase retarders, and one LC lens. The output light of the tunable optical system exhibits electrical tunability for the wavelength, energy density and beam size. The operating principle is introduced, and the experimental results are presented. The proposed concept can be further extended to other electrically tunable photonic devices for different clinical purposes for photobiomodulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA