Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plant Dis ; 108(5): 1146-1151, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38736172

RESUMO

The San Luis Valley (SLV), Colorado, is the second-largest fresh-potato-growing region in the United States, which accounts for about 95% of the total production in Colorado. Potato virus Y (PVY) is the leading cause of seed potato rejection in the SLV, which has caused a constant decline in seed potato production over the past two decades. To help potato growers control PVY, we monitored the dynamics of PVY infection pressure over the growing seasons of 2022 and 2023 (May through August) using tobacco bait plants exposed to field infection weekly. PVY infection dynamics were slightly different between the two seasons, but July and August had the highest infection in both years. The first PVY infection was detected in the second half of June, which coincides with the emergence of potato crops in the valley. PVY infection increased toward the beginning of August and declined toward the end of the season. Three PVY strains were identified in tobacco bait plants and potato fields, namely PVYO, PVYN-Wi, and PVYNTN. Unlike other producing areas of the United States, PVYO is still the major strain infecting potato crops in Colorado, comprising ∼40% of total PVY strain composition. This could be explained by the prevalence of the potato cultivar Russet Norkotah that lacks any identified N genes, including the Nytbr that controls PVYO, which imposes no negative selection against this strain. The current study demonstrated the usefulness of bait plants to understand PVY epidemiology and develop more targeted control practices of PVY.


Assuntos
Doenças das Plantas , Potyvirus , Solanum tuberosum , Colorado , Doenças das Plantas/virologia , Potyvirus/fisiologia , Potyvirus/genética , Solanum tuberosum/virologia , Estações do Ano , Nicotiana/virologia
2.
Plant Dis ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995763

RESUMO

Litchi tomato (LT) (Solanum sisymbriifolium) is a solanaceous weed that is considered a biological control tool to manage potato cyst nematode (PCN) in Europe and is being explored for use in Idaho. Two Several LT lines were clonally maintained as stocks in the university greenhouse since 2013 and were also established in tissue culture at the same time. In 2018, tomato (Solanum lycopersicum cv. Alisa Craig) scions were grafted onto two LT rootstocks originating either from healthy-looking greenhouse stocks or from tissue culture-maintained plants. Unexpectedly, tomatoes grafted onto the greenhouse-maintained rootstocks of LT displayed severe symptoms of stunting, foliar deformation, and chlorosis, while grafts onto the same LT lines from tissue culture produced healthy-looking tomato plants. Tests for the presence of several viruses known to infect solanaceous plants were conducted on symptomatic tomato scion tissues using ImmunoStrips (Agdia, Elkhard, IN) and RT-PCR (Elwan et al. 2017) but yielded negative results. High throughput sequencing (HTS) was then used to identify possible pathogens that could have been responsible for the symptoms observed in tomato scions. Samples from two symptomatic tomato scions, two asymptomatic scions grafted onto the tissue culture-derived plants, and two greenhouse-maintained rootstocks were subjected to HTS. Total RNA from the four tomato and two LT samples was depleted of ribosomal RNA and subjected to HTS on an Illumina MiSeq platform producing 300-bp paired-end reads and raw reads were adapter and quality cleaned. For the tomato samples, the clean reads were mapped against the S. lycopersicum L. reference genome, and unmapped paired reads were assembled producing between 4,368 and 8,645 contigs. For the LT samples, all clean reads were directly assembled, producing 13,982 and 18,595 contigs. In the symptomatic tomato scions and the two LT rootstock samples, a 487-nt contig was found, comprising an ~1.35 tomato chlorotic dwarf viroid (TCDVd) genome and exhibiting 99.7% identity with it (GenBank accession AF162131; Singh et al. 1999). No other virus-related or viroid contigs were identified. RT-PCR analysis using a pospiviroid primer set Pospi1-FW/RE (Verhoeven et al. 2004), and a TCDVd-specific primer set TCDVd-Fw/TCDVd-Rev (Olmedo-Velarde et al. 2019) produced 198-nt and 218-nt bands, respectively, thus confirming the presence of TCDVd in tomato and LT samples. These PCR products were Sanger sequenced and confirmed to be TCDVd-specific; the complete sequence of the Idaho isolate of TCDVd was deposited in GenBank under the accession number OQ679776. Presence of TCDVd in LT plant tissue was confirmed by the APHIS PPQ Laboratory in Laurel, MD. Asymptomatic tomatoes and LT plants from tissue culture were found negative for TCDVd. Previously, TCDVd was reported to affect greenhouse tomatoes in Arizona and Hawaii (Ling et al. et al. 2009; Olmedo-Velarde et al. 2019), however, this is the first report of TCDVd infecting litchi tomato (S. sisymbriifolium). Five additional greenhouse-maintained LT lines were found TCDVd-positive using RT-PCR and Sanger sequencing. Given the very mild or asymptomatic infection of TCDVd in this host, molecular diagnostic methods should be used to screen LT lines for the presence of this viroid to avoid inadvertent spread of TCDVd. Another viroid, potato spindle tuber viroid, was reported to be transmitted through LT seed (Fowkes et al. 2021), and transmission of TCDVd through LT seed may also be responsible for this TCDVd outbreak in the university greenhouse, although no direct evidence was collected. To the best of our knowledge, this is the first report of TCDVd infection in S. sisymbriifolium and also the first report of the TCDVd occurrence in Idaho.

3.
Plant Dis ; 106(3): 810-817, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34698520

RESUMO

Potato virus Y (PVY) has emerged as the main reason for potato seed lot rejections, seriously affecting seed potato production in the United States throughout the past 20 years. The dynamics of PVY strain abundance and composition in various potato growing areas of the United States has not been well documented or understood up to now. The objective of this study was to find out the prevalence of PVY strains in potato fields in the Pacific Northwest (PNW), including seed potato production systems in the State of Idaho and commercial potato fields in the Columbia Basin of Washington State between 2011 and 2021. Based on the testing of >10,000 foliar samples during Idaho seed certification winter grow-out evaluations of seed potato lots and seed lot trials in Washington State, a dramatic shift in the PVY strain composition was revealed in the PNW between 2011 and 2016. During this time period, the prevalence of the ordinary, PVYO strain in seed potato dropped 8- to 10-fold, concomitantly with the rise of recombinant strains PVYN-Wi and PVYNTNa, which together accounted for 98% of all PVY positives by 2021. In Idaho seed potato, PVYNTNa strain associated with the potato tuber necrotic ringspot disease (PTNRD) was found to increase threefold between 2011 and 2019, accounting for 24% of all PVY positives in 2019. Mild foliar symptoms induced by recombinant PVY strains may be partially responsible for the proliferation of PVYN-Wi and PVYNTNa in potato crops. A spike of another PTNRD-associated recombinant, PVY-NE11, was recorded in the PNW between 2012 and 2016, but after reaching a 7 to 10% level in 2012 to 2013 this recombinant disappeared from the PNW potato by 2019. Whole genome sequence analysis of the PVY-NE11 suggested this recombinant was introduced in the United States at least three times. The data on PVY strain abundance in the PNW potato crops suggest that virus management strategies must consider the current dominance of the two recombinant PVY strains, PVYN-Wi and PVYNTNa.


Assuntos
Potyvirus , Solanum tuberosum , Idaho , Doenças das Plantas , Potyvirus/genética , Prevalência , Sementes , Estados Unidos , Washington
4.
Plant Dis ; 104(1): 269-275, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31746695

RESUMO

The recombinant strain of potato virus Y (PVY), PVYNTN, is the main cause of the potato tuber necrotic ringspot disease (PTNRD) in susceptible potato cultivars, which reduces the quality of potato tubers, in addition to the yield loss. Control of PVY has been the main challenge in most potato-producing areas. Here, the effects of the age-related resistance (ARR) were investigated in transplants of a potato cultivar Yukon Gold to the infection with PVYNTN strain in greenhouse experiments. Within the first 3 weeks after transplanting into soil (week 1 [W1] to W3), Yukon Gold plants developed ARR that impaired the systemic movement of PVYNTN into upper noninoculated leaves and concomitant translocation into progeny tubers starting from W4 after transplanting. The yield and quality of tubers from PVY-infected plants with the established ARR (W5 to W8) were comparable with the healthy controls, suggesting that late PVY infection would not significantly affect commercial potato production. Plants inoculated early (W1 to W2), before the establishment of the ARR, exhibited a 100% primary systemic infection with PVYNTN and produced fewer tubers of smaller sizes, exhibiting PTNRD; this resulted ≤70% yield reduction compared with plants inoculated later in the season (W5 to W8). This ARR greatly restricted the systemic movement of PVYNTN in the foliage and resulted in very limited translocation rates of the virus into tested progeny tubers: 7.8 and 4.1% in 2017 and 2018, respectively, of all plants inoculated later in the season (W5 to W8). This study suggests that PVYNTN management programs in Yukon Gold seed potato should focus more on the early stages of the potato development before the onset of the ARR.


Assuntos
Potyvirus , Solanum tuberosum , Resistência à Doença/fisiologia , Doenças das Plantas/virologia , Potyvirus/fisiologia , Solanum tuberosum/virologia
5.
Plant Dis ; 104(9): 2317-2323, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32692623

RESUMO

Potato virus Y (PVY) isolates from potato currently exist as a complex of six biologically defined strain groups all containing nonrecombinant isolates and at least 14 recombinant minor phylogroups. Recent studies on eight historical UK potato PVY isolates preserved since 1984 found only nonrecombinants. Here, four of five PVY isolates from cultivated potato or wild Solanum spp. collected recently in Australia, Mexico, and the U.S.A. were typed by inoculation to tobacco plants and/or serological testing using monoclonal antibodies. Next, these five modern isolates and four additional historical UK isolates belonging to biological strain groups PVYC, PVYZ, or PVYN obtained from cultivated potato in 1943 to 1984 were sequenced. None of the nine complete PVY genomes obtained were recombinants. Phylogenetic analysis revealed that the four historical UK isolates were in minor phylogroups PVYC1 (YC-R), PVYO-O (YZ-CM1), PVYNA-N (YN-M), or PVYEu-N (YN-RM), Australian isolate YO-BL2 was in minor phylogroup PVYO-O5, and both Mexican isolate YN-Mex43 and U.S.A. isolates YN-MT12_Oth288, YN-MT12_Oth295, and YN-WWAA150131G42 were in minor phylogroup PVYEu-N. When combined, these new findings and those from the eight historical UK isolates sequenced earlier provide important historical insights concerning the diversity of early PVY populations in Europe and the appearance of recombinants in that part of the world. They and four recent Australian isolates sequenced earlier also provide geographical insights about the geographical distribution and diversity of PVY populations in Australia and North America.


Assuntos
Potyvirus , Austrália , Europa (Continente) , Variação Genética , México , América do Norte , Filogenia , Doenças das Plantas
6.
Plant Dis ; 104(12): 3110-3114, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33058718

RESUMO

Potato virus Y (PVY) is one of the main viruses affecting potato in Australia. However, molecular characterization of PVY isolates circulating in potato in different states of Australia has not yet been thoroughly conducted. Only nonrecombinant isolates of three biological PVY strains collected from potato were reported previously from Western Australia and one from Queensland. Here, PVY isolates collected from seed potato originating in Victoria, Australia, and printed on FTA cards, were subjected to strain typing by RT-PCR, with three isolates subjected to whole genome sequencing. All the 59 PVY isolates detected during two growing seasons were identified to be recombinants based on two RT-PCR assays. No nonrecombinant PVY isolates were identified. All the RT-PCR typed isolates belonged to the PVYNTN strain. Sequence analysis of the whole genomes of three isolates suggested a single introduction of the PVYNTN strain to Australia but provided no clues as to where this introduction originated. Given the association of the PVYNTN strain with potato tuber damage, growers in Australia should implement appropriate strategies to manage PVYNTN in potato.


Assuntos
Potyvirus , Solanum tuberosum , Doenças das Plantas , Potyvirus/genética , Queensland , Vitória , Austrália Ocidental
7.
Plant Dis ; 103(1): 137-142, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30412456

RESUMO

Potato is an important source of food in South Korea, and viruses represent a significant threat to sustainable and profitable potato production. However, information about viruses affecting the potato crop in South Korea is limited. In 2017, potato plants of five cultivars exhibiting foliar mosaic, crinkling, and mottle were collected in two seed potato production areas, in Gangwon-do and Jeollabuk-do Provinces, and subjected to virus testing and characterization. Potato virus Y (PVY) was found associated with mosaic symptoms, and samples were characterized using reverse transcription polymerase chain reaction (RT-PCR) and whole genome sequencing. All analyzed PVY-positive samples were found to represent the same recombinant PVY strain: PVYNTN. Three PVY isolates were subjected to whole genome sequencing using overlapping RT-PCR fragments and Sanger methodology, and all three were confirmed to represent strain PVYNTNa after a recombination analysis of the complete genomes. In phylogenetic analysis, the three South Korean isolates were placed most closely to several PVYNTNa isolates reported from Japan and Vietnam, suggesting a common source of infection. This is the first report and complete molecular characterization of a PVYNTN strain present in the country, and because this strain induces tuber necrotic ringspot disease in susceptible cultivars of potato, appropriate management tools need to be implemented to mitigate potential tuber quality losses.


Assuntos
Potyvirus , Solanum tuberosum , Japão , Filogenia , Doenças das Plantas , República da Coreia , Vietnã
8.
Phytopathology ; 107(11): 1433-1439, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28653578

RESUMO

Poha, or cape gooseberry (Physalis peruviana L.), is a plant species cultivated in Hawaii for fresh fruit production. In 2015, an outbreak of virus symptoms occurred on poha farms in the South Kohala District of the island of Hawaii. The plants displayed mosaic, stunting, and leaf deformation, and produced poor fruit. Initial testing found the problem associated with Potato virus Y (PVY) infection. Six individual PVY isolates, named Poha1 to Poha6, were collected from field-grown poha plants and subjected to biological and molecular characterization. All six isolates induced mosaic and vein clearing in tobacco, and three of them exhibited O-serotype while the other three reacted only with polyclonal antibodies and had no identifiable serotype. Until now, PVY isolates have been broadly divided into pepper or potato adapted; however, these six PVY isolates from poha were unable to establish systemic infection in pepper and in four tested potato cultivars. Whole-genome sequences for the six isolates were determined, and no evidence of recombination was found in any of them. Phylogenetic analysis placed poha PVY isolates in a distinct, monophyletic "Poha" clade within the PVYC lineage, suggesting that they represented a novel, biologically and evolutionarily unique group. The genetic diversity within this poha PVYC clade was unusually high, suggesting a long association of PVYC with this solanaceous host or a prolonged geographical separation of PVYC in poha in Hawaii.


Assuntos
Capsicum/virologia , Physalis/virologia , Doenças das Plantas/virologia , Potyvirus/fisiologia , Solanum tuberosum/virologia , Variação Genética , Filogenia , Potyvirus/genética , Nicotiana/virologia
9.
Plant Dis ; 101(1): 20-28, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30682299

RESUMO

Potato virus Y (PVY) is a serious threat to potato production due to effects on tuber yield and quality, in particular, due to induction of potato tuber necrotic ringspot disease (PTNRD), typically associated with recombinant strains of PVY. These recombinant strains have been spreading in the United States for the past several years, although the reasons for this continuing spread remained unclear. To document and assess this spread between 2011 and 2015, strain composition of PVY isolates circulating in the Columbia Basin potato production area was determined from hundreds of seed lots of various cultivars. The proportion of nonrecombinant PVYO isolates circulating in Columbia Basin potato dropped ninefold during this period, from 63% of all PVY-positive plants in 2011 to less than 7% in 2015. This drop in PVYO was concomitant with the rise of the recombinant PVYN-Wi strain incidence, from less than 27% of all PVY-positive plants in 2011 to 53% in 2015. The proportion of the PVYNTN recombinant strain, associated with PTNRD symptoms in susceptible cultivars, increased from 7% in 2011 to approximately 24% in 2015. To further address the shift in strain abundance, screenhouse experiments were conducted and revealed that three of the four most popular potato cultivars grown in the Columbia Basin exhibited strain-specific resistance against PVYO. Reduced levels of systemic movement of PVYO in such cultivars would favor spread of recombinant strains in the field. The negative selection against the nonrecombinant PVYO strain is likely caused by the presence of the Nytbr gene identified in potato cultivars in laboratory experiments. Presence of strain-specific resistance genes in potato cultivars may represent the driving force changing PVY strain composition to predominantly recombinant strains in potato production areas.

10.
Arch Virol ; 161(12): 3561-3566, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27654668

RESUMO

An isolate of potato virus Y (PVY), PVY-H14, was collected on the island of Oahu, Hawaii, from tomato plants exhibiting stunting and necrotic lesions on leaves. PVY-H14 triggered the hypersensitive resistance response in potato cultivars King Edward and Maris Bard, typical of a PVYC strain, and was unable to infect systemically the four tested cultivars, Desiree, Maris Bard, King Edward, and Russet Norkotah. Phylogenetic analysis of H14 and the whole genomes of 31 PVY isolates of non-recombinant strains of PVY placed PVY-H14 in the same clade with PVYC and several unclassified PVY isolates from tomato and tobacco.


Assuntos
Doenças das Plantas/virologia , Potyvirus/isolamento & purificação , Potyvirus/patogenicidade , Solanum lycopersicum/virologia , Análise por Conglomerados , Genoma Viral , Genótipo , Havaí , Filogenia , Folhas de Planta/virologia , Potyvirus/classificação , Potyvirus/genética , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência
11.
Plant Dis ; 100(2): 292-297, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30694145

RESUMO

Potato virus Y (PVY) exists as a complex of strains, many of which are recombinants. The practical importance of PVY recombinant strains has increased due to their ability to induce potato tuber necrotic ring spot disease (PTNRD) that seriously affects tuber quality. In Saudi Arabia, potato production has increased fivefold during the last three decades, reaching 460,000 tons per year. Although PVY has been reported as one of the main viruses affecting potatoes, no information is available on PVY strains circulating in the country. In August 2014, a survey was conducted in a seed potato field at Al-Jouf, Saudi Arabia. PVY-positive samples selected based on visual symptoms and serological reactivity were subjected to strain typing using multiplex RT-PCR assays and were determined to represent recombinant PVY strains. Whole genome sequences were determined for two representative isolates, S2 and S9, through direct sequencing of a series of overlapping RT-PCR fragments for each isolate, and found to represent strains PVY-NE11 and PVYZ (SYR-III), respectively. One of the recombinant types, SYR-III, was previously found in nearby Syria and Jordan, but the second recombinant, PVY-NE11, was found before only in the United States. Both recombinants, PVY-NE11 and SYR-III, were previously found associated with PTNRD and thought to be rare. The current identification of PVY-NE11 and SYR-III in seed potato in a new geographic region suggests that these recombinants may not be as rare as previously believed. This is the first report on the occurrence of recombinant strains of PVY in potato in Saudi Arabia, and the first report on the PVY-NE11 strain of PVY found in potato outside of the United States.

12.
Plant Dis ; 100(2): 269-275, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30694150

RESUMO

The importance of potato has increased dramatically in Indonesia over the last three decades. During this period, 'Granola', a potato cultivar originally from Germany, has become the most common cultivar for fresh consumption in Indonesia. In August 2014, a survey was conducted in Sulawesi, where potato fields cultivated with Granola and its selection, 'Super John', were sampled for Potato virus Y (PVY) presence. PVY was found in Sulawesi for the first time. Samples determined to be positive for PVY were subsequently typed to strain using reverse-transcription polymerase chain reaction assays. All PVY isolates sampled were identified as PVYNTN recombinants, with three recombination junctions in P3, VPg, and CP regions of the genome. Three local PVY isolates were subjected to whole-genome sequencing and subsequent sequence analysis. The whole genomes of the Indonesian PVYNTN isolates I-6, I-16, and I-17 were found to be closely related to the European PVYNTN-A. This recombinant type was shown previously to cause potato tuber necrotic ringspot disease (PTNRD) in susceptible potato cultivars. The dependence of potato farmers on mostly a single cultivar, Granola, may have given a competitive advantage to PVYNTN over other PVY strains, resulting in the predominance of the PVYNTN recombinant. The dominance of PVYNTN in Sulawesi, and possibly in Indonesia as a whole, represents a potential risk to any newly introduced potato cultivar to the country, especially cultivars susceptible to PTNRD.

13.
Microbiol Resour Announc ; 13(2): e0051223, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133347

RESUMO

Six genome sequences for potato virus Y (PVY) recombinants are reported from two North American potato cultivars grown in China. The coding complete sequences encode a single open reading frame characteristic of potyviruses. The six sequenced PVY isolates represent three distinct recombinants of PVY, namely N-Wi, SYR-I, and SYR-II.

14.
Plant Dis ; 97(10): 1370-1374, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30722141

RESUMO

A multiplex reverse-transcription polymerase chain reaction (RT-PCR) assay was previously developed to identify a group of Potato virus Y (PVY) isolates with unusual recombinant structures (e.g., PVYNTN-NW and SYR-III) and to differentiate them from other PVY strains. In the present study, the efficiency of this multiplex RT-PCR assay was validated and extended considerably to include five additional strains and strain groups not tested before. To make the multiplex RT-PCR assay more applicable and suitable for routine virus testing and typing, it was modified by replacing the conventional RNA extraction step with the immunocapture (IC) procedure. The results obtained using well-characterized reference isolates revealed, for the first time, that this multiplex RT-PCR assay is an accurate and robust method to identify and differentiate the nine PVY strains reported to date, including PVYO (both PVYO and PVYO-O5), PVYN, PVYNA-N, PVYNTN, PVYZ, PVYE, PVY-NE11, PVYN-Wi, and PVYN:O, which is not possible by any of the previously reported RT-PCR procedures. This would make the IC-RT-PCR procedure presented here a method of choice to identify PVY strains and assess the strain composition of PVY in a given area. The IC-RT-PCR protocol was successfully applied to typing PVY isolates in potato leaf tissue collected in the field.

15.
Methods Mol Biol ; 1302: 177-86, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25981255

RESUMO

Immunocapture-reverse transcription-polymerase chain reaction (IC-RT-PCR) is a sensitive, reproducible, and robust method for the detection and identification of RNA viruses. The IC step provides a simple method to isolate virus particles from plant tissue, particularly when inhibitory substances are present, and thus enables subsequent use of RT-PCR amplification for large-scale virus testing and typing. The multiplex format of the PCR is often used for the detection and identification of multiple virus/strain simultaneously to save time, labor, and cost. Potato virus Y (PVY) is one of the most economically important viruses infecting potato worldwide. PVY exists as a complex of at least nine strains and many more unclassified recombinants that vary in their genome structures, phenotypes, and their economic importance. In the current chapter, a detailed protocol of an IC-based, multiplex RT-PCR assay for the detection and identification of various PVY strains is described.


Assuntos
Anticorpos Antivirais/imunologia , Reação em Cadeia da Polimerase Multiplex/métodos , Doenças das Plantas/virologia , Potyvirus/isolamento & purificação , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Solanum tuberosum/virologia , Folhas de Planta/virologia , Tubérculos/virologia , Potyvirus/genética , Potyvirus/patogenicidade , RNA Viral/genética
16.
Virus Genes ; 35(2): 359-67, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17564823

RESUMO

A Syrian isolate of Potato virus Y (PVY), named PVY-12, reacted to two monoclonal antibodies that are specific to PVY(O,C) and PVY(N) strains, although its coat protein (CP) belongs to the PVY(N) strain. Analysis of the CP of PVY-12 revealed that a point mutation in its N terminus switched it from PVY(N)-like to PVY(O)-like at this position. This mutation changed the second nucleotide of the codon that encodes the 29th amino acid of the CP of PVY-12 from A to G, which resulted in one amino acid substitution from Glu(29 )to Gly(29). The role of Gly(29) in the binding of PVY-12 to PVY(O,C)-specific monoclonal antibody was confirmed by gene expression in Escherichia coli. The N terminus of the CP gene of PVY-12 and another PVY isolate of the N serotype with identical CP to PVY-12 except for one amino acid substitution from Gly(29 )to Glu(29) was cloned and expressed in E. coli using a pUC18 vector. Resulting antigens showed similar reactivity to the relevant antibodies as same as the native CPs of these two isolates. Further analysis of the CP of PVY isolates showed that Gly(29) was conserved in the CP of PVY(O), PVY(C), PVY(N)W, and non-potato isolates of PVY while Gln(17) and Glu(31 )were conserved in the CP of PVY(N/NTN). Therefore, these amino acids are characteristic of the CP for these strain groups and subgroups in agreement with the serotype and phylogenetic relationships previously determined.


Assuntos
Genoma Viral , Mutação Puntual , Potyvirus/classificação , Potyvirus/genética , Solanum tuberosum/virologia , Sequência de Aminoácidos , Chenopodium quinoa/virologia , Dados de Sequência Molecular , Potyvirus/imunologia , Sorotipagem , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA