Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
FASEB J ; 33(12): 14221-14233, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659914

RESUMO

Deleted in azoospermia-like (DAZL) is a germ cell RNA-binding protein that is essential for entry and progression through meiosis. The phenotype of the Dazl knockout mouse has extensive germ cell loss because of incomplete meiosis. We have created a Dazl hypomorph model using short interfering RNA knockdown in mouse fetal ovary cultures, allowing investigation of Dazl function in germ cell maturation. Dazl hypomorph ovaries had a phenotype of impaired germ cell nest breakdown with a 66% reduction in total follicle number and an increase in the proportion of primordial follicles (PMFs), with smaller oocytes within these follicles. There was no significant early germ cell loss or meiotic delay. Immunostaining of intercellular bridge component testis-expressed protein (Tex)14 showed ∼59% reduction in foci number and size, without any change in Tex14 mRNA levels. TEX14 expression was also confirmed in the human fetal ovary across gestation. Using 3'UTR-luciferase reporter assays, translational regulation of TEX14 was demonstrated to be DAZL-dependant. Dazl is therefore essential for normal intercellular bridges within germ cell nests and their timely breakdown, with a major impact on subsequent assembly of PMFs.-Rosario, R., Crichton, J. H., Stewart, H. L., Childs, A. J., Adams, I. R., Anderson, R. A. Dazl determines primordial follicle formation through the translational regulation of Tex14.


Assuntos
Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Animais , Clonagem Molecular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Meiose/fisiologia , Camundongos , Interferência de RNA , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética
2.
Mol Hum Reprod ; 22(9): 622-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27385727

RESUMO

STUDY QUESTION: Do changes in the expression of bone morphogenetic proteins (BMPs) 2 and 4, and their antagonists Gremlin1 (GREM1) and Gremlin2 (GREM2) during human fetal ovarian development impact on BMP pathway activity and lead to changes in gene expression that may influence the fate and/or function of ovarian somatic cells? STUDY FINDING: BMPs 2 and 4 differentially regulate gene expression in cultured human fetal ovarian somatic cells. Expression of some, but not all BMP target genes is antagonised by GREM1 and GREM2, indicating the existence of a mechanism to fine-tune BMP signal intensity in the ovary. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a marker of immature ovarian somatic cells, is identified as a novel transcriptional target of BMP4. WHAT IS KNOWN ALREADY: Extensive re-organisation of the germ and somatic cell populations in the feto-neonatal ovary culminates in the formation of primordial follicles, which provide the basis for a female's future fertility. BMP growth factors play important roles at many stages of ovarian development and function. GREM1, an extracellular antagonist of BMP signalling, regulates the timing of primordial follicle formation in the mouse ovary, and mRNA levels of BMP4 decrease while those of BMP2 increase prior to follicle formation in the human fetal ovary. STUDY DESIGN, SAMPLES/MATERIALS, METHODS: Expression of genes encoding BMP pathway components, BMP antagonists and markers of ovarian somatic cells were determined by quantitative (q)RT-PCR in human fetal ovaries (from 8 to 21 weeks gestation) and fetal ovary-derived somatic cell cultures. Ovarian expression of GREM1 protein was confirmed by immunoblotting. Primary human fetal ovarian somatic cell cultures were derived from disaggregated ovaries by differential adhesion and cultured in the presence of recombinant human BMP2 or BMP4, with or without the addition of GREM1 or GREM2. MAIN RESULTS AND THE ROLE OF CHANCE: We demonstrate that the expression of BMP antagonists GREM1, GREM2 and CHRD  increases in the lead-up to primordial follicle formation in the human fetal ovary, and that the BMP pathway is active in cultured ovarian somatic cells. This leads to differential changes in the expression of a number of genes, some of which are further modulated by GREM1 and/or GREM2. The positive transcriptional regulation of LGR5 (a marker of less differentiated somatic cells) by BMP4 in vitro suggests that increasing levels of GREM1 and reduced levels of BMP4 as the ovary develops in vivo may act to reduce LGR5 levels and allow pre-granulosa cell differentiation. LIMITATIONS, REASONS FOR CAUTION: While we have demonstrated that markers of different somatic cell types are expressed in the cultured ovarian somatic cells, their proportions may not represent the same cells in the intact ovary which also contains germ cells. WIDER IMPLICATIONS OF THE FINDINGS: This study extends previous work identifying germ cells as targets of ovarian BMP signalling, and suggests BMPs may regulate the development of both germ and somatic cells in the developing ovary around the time of follicle formation. LARGE SCALE DATA: Not applicable. STUDY FUNDING/COMPETING INTERESTS: This work was supported by The UK Medical Research Council (Grant No.: G1100357 to RAA), and Medical Research Scotland (Grant No. 345FRG to AJC). The authors have no competing interests to declare.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ovário/citologia , Ovário/metabolismo , Proteína Morfogenética Óssea 4/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Citocinas , Feminino , Regulação da Expressão Gênica/genética , Células Germinativas/citologia , Células Germinativas/metabolismo , Humanos , Oócitos/citologia , Oócitos/metabolismo , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
Mol Hum Reprod ; 20(1): 42-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23979962

RESUMO

Fetal life is a critical time for female fertility, when germ cells complete proliferation, initiate meiosis and ultimately form the lifetime stock of primordial follicles. Female fertility may be reduced by in utero exposure to cigarette smoke, which contains ligands for the aryl hydrocarbon receptor (AhR). The AhR is a critical regulator of ovarian germ cell survival in mice; thus activation of this receptor in the ovaries of fetuses exposed to maternal cigarette smoke in utero may provide a mechanism by which female fertility is reduced in later life. We have therefore investigated AhR expression in the human fetal ovary, and examined the effects of an AhR ligand present in cigarette smoke, on germ cells in human fetal ovaries cultured in vitro. The results showed that AHR mRNA expression increased 2-fold between first and late second trimester (P = 0.008). AhR protein was confined to germ cells at all gestations, but varied from expression in most germ cells during the first trimester, to only patchy expression by clusters of germ cells at later gestations. Culture of human fetal ovaries with the AhR ligand 9,10-dimethyl-1,2-benzanthracene-3,4-dihydrodiol (DMBA-DHD; a component of cigarette smoke) did not affect germ cell number in vitro, but significantly reduced the proportion of proliferating germ cells by 29% (as assessed by phospho-histone H3 staining (P = 0.04)). Germ cell apoptosis was not significantly affected. These results reveal that germ cells in the human fetal ovary express AhR from the proliferative stage of development through entry into meiosis and beyond, and demonstrate that AhR ligands found in cigarette smoke have the capacity to impair human fetal ovarian germ cell proliferation.


Assuntos
9,10-Dimetil-1,2-benzantraceno/análogos & derivados , Células Germinativas/efeitos dos fármacos , Ovário/embriologia , Receptores de Hidrocarboneto Arílico/metabolismo , Fumaça/efeitos adversos , 9,10-Dimetil-1,2-benzantraceno/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Fármacos para a Fertilidade Feminina , Feto/efeitos dos fármacos , Células Germinativas/metabolismo , Humanos , Oogênese/efeitos dos fármacos , Ovário/metabolismo , Gravidez , RNA Mensageiro/biossíntese , Receptores de Hidrocarboneto Arílico/biossíntese , Receptores de Hidrocarboneto Arílico/genética
4.
Hum Reprod ; 29(7): 1471-89, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24847019

RESUMO

STUDY QUESTION: How does maternal cigarette smoking disturb development of the human fetal ovary? SUMMARY ANSWER: Maternal smoking increases fetal estrogen titres and dysregulates several developmental processes in the fetal ovary. WHAT IS KNOWN ALREADY: Exposure to maternal cigarette smoking during gestation reduces human fetal ovarian cell numbers, germ cell proliferation and subsequent adult fecundity. STUDY DESIGN, SIZE, DURATION: The effects of maternal cigarette smoking on the second trimester human fetal ovary, fetal endocrine signalling and fetal chemical burden were studied. A total of 105 fetuses were studied, 56 from mothers who smoked during pregnancy and 49 from those who did not. PARTICIPANTS/MATERIALS, SETTING METHODS: Ovary, liver and plasma samples were collected from electively terminated, normally progressing, second trimester human fetuses. Circulating fetal hormones, levels of 73 fetal ovarian transcripts, protein localization, density of oocytes/primordial follicles and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in the fetal liver were determined. MAIN RESULTS AND THE ROLE OF CHANCE: Circulating fetal estrogen levels were very high and were increased by maternal smoking (ANOVA, P = 0.055-0.004 versus control). Smoke exposure also dysregulated (two-way ANOVA, smoking versus gestation weeks interaction, P = 0.046-0.023) four fetal ovarian genes (cytochrome P450 scc [CYP11A1], NOBOX oogenesis homeobox [NOBOX], activator of apoptosis harakiri [HRK], nuclear receptor subfamily 2, group E, member 1 [NR2E1]), shifted the ovarian Inhibin ßA/inhibin α ratio (NHBA/INHA) transcript ratio in favour of activin (ANOVA, P = 0.049 versus control) and reduced the proportion of dominant-negative estrogen receptor 2 (ERß: ESR2) isoforms in half the exposed fetuses. PAHs, ligands for the aryl hydrocarbon receptor (AHR), were increased nearly 6-fold by maternal smoking (ANOVA, P = 0.011 versus control). A fifth transcript, COUP transcription factor 1 (nuclear receptor subfamily 2, group F, member 1: NR2F1, which contains multiple AHR-binding sites), was both significantly increased (ANOVA, P = 0.026 versus control) and dysregulated by (two-way ANOVA, smoking versus gestation weeks interaction, P = 0.021) maternal smoking. NR2F1 is associated with repression of FSHR expression and smoke-exposed ovaries failed to show the normal increase in FSHR expression during the second trimester. There was a significantly higher number of DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 (DDX4) VASA-positive (ANOVA, P = 0.016 versus control), but not POU domain, class 1, transcription factor 1 (POU5F1) OCT3/4-positive, oocytes in smoke-exposed fetuses and this matched with a significantly higher number of primordial follicles (ANOVA, P = 0.024 versus control). LIMITATIONS, REASONS FOR CAUTION: The effects of maternal smoking on establishment of the maximum fetal primordial follicle pool cannot be reliably studied in our population since the process is not completed until 28 weeks of gestation and normal fetuses older than 21 weeks of gestation are not available for study. Our data suggest that some fetal ovaries are affected by smoke exposure while others are not, indicating that additional studies, with larger numbers, may show more significant effects. WIDER IMPLICATIONS OF THE FINDINGS: Fetal exposure to chemicals in cigarette smoke is known to lead to reduced fecundity in women. Our study suggests, for the first time, that this occurs via mechanisms involving activation of AHR, disruption of inhibin/activin and estrogen signalling, increased exposure to estrogen and dysregulation of multiple molecular pathways in the exposed human fetal ovary. Our data also suggest that alterations in the ESR2 positive and dominant negative isoforms may be associated with reduced sensitivity of some fetuses to increased estrogens and maternal smoking. STUDY FUNDING/COMPETING INTEREST(S): The study was supported by grants from the Chief Scientist Office (Scottish Executive, CZG/1/109, and CZG/4/742), NHS Grampian Endowments (08/02), the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 212885, a Society for Reproduction & Fertility summer studentship, Medical Research Scotland (research grant 354 FRG) and the Medical Research Council (WBS: U.1276.00.002.00001 and G1100357). The authors declare they have no competing interests, be it financial, personal or professional.


Assuntos
Exposição Materna/efeitos adversos , Ovário/efeitos dos fármacos , Fumar/efeitos adversos , Adulto , Índice de Massa Corporal , Proliferação de Células , Cotinina/metabolismo , Estrogênios/metabolismo , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Células Germinativas/citologia , Humanos , Imuno-Histoquímica , Recém-Nascido , Ligantes , Fígado/metabolismo , Oócitos/citologia , Folículo Ovariano/embriologia , Ovário/embriologia , Ovário/patologia , Fenótipo , Hidrocarbonetos Policíclicos Aromáticos , Gravidez , Segundo Trimestre da Gravidez , Transdução de Sinais , Produtos do Tabaco
5.
Mol Hum Reprod ; 18(2): 88-95, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21965347

RESUMO

Fetal ovarian development and primordial follicle formation are imperative for adult fertility in the female. Data suggest the interleukin (IL)6-type cytokines, leukaemia inhibitory factor (LIF), IL6, oncostatin M (OSM) and ciliary neurotrophic factor (CNTF), are able to regulate the survival, proliferation and differentiation of fetal murine germ cells (GCs) in vivo and in vitro. We postulated that these factors may play a similar role during early human GC development and primordial follicle formation. To test this hypothesis, we have investigated the expression and regulation of IL6-type cytokines, using quantitative reverse transcription polymerase chain reaction and immunohistochemistry. Expression of transcripts encoding OSM increased significantly across the gestational range examined (8-20 weeks), while expression of IL6 increased specifically between the first (8-11 weeks) and early second (12-16 weeks) trimesters, co-incident with the initiation of meiosis. LIF and CNTF expression remained unchanged. Expression of the genes encoding the LIF and IL6 receptors, and their common signalling subunit gp130, was also found to be developmentally regulated, with expression increasing significantly with increasing gestation. LIF receptor and gp130 proteins localized exclusively to GCs, including oocytes in primordial follicles, indicating this cell type to be the sole target of IL6-type cytokine signalling in the human fetal ovary. These data establish that IL6-type cytokines and their receptors are expressed in the human fetal ovary and may directly influence GC development at multiple stages of maturation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oócitos/metabolismo , Folículo Ovariano/metabolismo , RNA Mensageiro/biossíntese , Transdução de Sinais/genética , Adulto , Fator Neurotrófico Ciliar/genética , Fator Neurotrófico Ciliar/metabolismo , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Feminino , Feto , Idade Gestacional , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Fator Inibidor de Leucemia/genética , Fator Inibidor de Leucemia/metabolismo , Oncostatina M/genética , Oncostatina M/metabolismo , Oócitos/crescimento & desenvolvimento , Folículo Ovariano/crescimento & desenvolvimento , Gravidez , Trimestres da Gravidez , Reação em Cadeia da Polimerase em Tempo Real , Receptor do Fator Neutrófico Ciliar/genética , Receptor do Fator Neutrófico Ciliar/metabolismo , Receptores de Oncostatina M/genética , Receptores de Oncostatina M/metabolismo
6.
Stem Cells ; 28(8): 1368-78, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20506112

RESUMO

Primordial germ cells (PGCs) are the embryonic precursors of gametes in the adult organism, and their development, differentiation, and survival are regulated by a combination of growth factors collectively known as the germ cell niche. Although many candidate niche components have been identified through studies on mouse PGCs, the growth factor composition of the human PGC niche has not been studied extensively. Here we report a detailed analysis of the expression of components of the bone morphogenetic protein (BMP) signaling apparatus in the human fetal ovary, from postmigratory PGC proliferation to the onset of primordial follicle formation. We find developmentally regulated and reciprocal patterns of expression of BMP2 and BMP4 and identify germ cells to be the exclusive targets of ovarian BMP signaling. By establishing long-term cultures of human fetal ovaries in which PGCs are retained within their physiological niche, we find that BMP4 negatively regulates postmigratory PGC numbers in the human fetal ovary by promoting PGC apoptosis. Finally, we report expression of both muscle segment homeobox (MSX)1 and MSX2 in the human fetal ovary and reveal a selective upregulation of MSX2 expression in human fetal ovary in response to BMP4, suggesting this gene may act as a downstream effector of BMP-induced apoptosis in the ovary, as in other systems. These data reveal for the first time growth factor regulation of human PGC development in a physiologically relevant context and have significant implications for the development of cultures systems for the in vitro maturation of germ cells, and their derivation from pluripotent stem cells.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Feto/citologia , Feto/metabolismo , Células Germinativas/citologia , Ovário/citologia , Ovário/metabolismo , Apoptose/genética , Apoptose/fisiologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proliferação de Células , Feminino , Imunofluorescência , Células Germinativas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Ovário/embriologia , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas de Cultura de Tecidos
7.
PLoS Genet ; 4(9): e1000199, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18802469

RESUMO

As genetic information is transmitted through successive generations, it passes between pluripotent cells in the early embryo and germ cells in the developing foetus and adult animal. Tex19.1 encodes a protein of unknown function, whose expression is restricted to germ cells and pluripotent cells. During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential function in germ cells or pluripotent stem cells, or what that function might be. To analyse the potential role of Tex19.1 in pluripotency or germ cell function we have generated Tex19.1(-/-) knockout mice and analysed the Tex19.1(-/-) mutant phenotype. Adult Tex19.1(-/-) knockout males exhibit impaired spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis in the Tex19.1(-/-) testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1(-/-) mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects in spermatogenesis. Our results suggest that Tex19.1 is part of a specialised mechanism that operates in the germline to repress transposable genetic elements and maintain genomic stability through successive generations.


Assuntos
Retrovirus Endógenos/fisiologia , Deleção de Genes , Proteínas Nucleares/metabolismo , Espermatogênese , Ativação Viral , Animais , Pareamento Cromossômico , Quebras de DNA de Cadeia Dupla , Expressão Gênica , Masculino , Meiose , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas de Ligação a RNA , Espermatócitos/citologia , Espermatócitos/fisiologia , Espermatócitos/virologia
8.
Dev Dyn ; 239(4): 1211-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20175187

RESUMO

The tropomyosin-related kinase (Trk) B neurotrophin receptor is essential for ovarian germ cell survival and primordial follicle formation, but the contributions of its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT4), are unknown. We have investigated their expression and regulation in developing human and mouse ovaries. BDNF expression increased with increasing gestation, expression of human NTF4 and of both Ntf5 and Bdnf in the mouse was unchanged. Bdnf expression was dramatically lower than Ntf5 in the mouse, but levels were comparable in the human. Human fetal ovarian somatic cells expressed BDNF. Activin A selectively regulated BDNF and Ntf5 expression in human and mouse, respectively, identifying an oocyte/somatic signaling pathway which might mediate the pro-survival effects of activin. These data reveal that expression and regulation of the TrkB ligands are differentially controlled in the developing ovaries of humans and mice, and identify BDNF as a potential regulator of germ cell fate in the human fetal ovary.


Assuntos
Ativinas/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Fatores de Crescimento Neural/genética , Ovário/embriologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Feminino , Feto/efeitos dos fármacos , Feto/metabolismo , Idade Gestacional , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Óvulo/metabolismo , Óvulo/fisiologia
10.
Hum Reprod ; 25(10): 2405-14, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20683063

RESUMO

BACKGROUND: Abnormal fetal testis development can result in disorders of sex development (DSDs) and predispose to later testicular dysgenesis syndrome (TDS) disorders such as testicular germ cell tumours. Studies of human fetal testis development are hampered by the lack of appropriate model, and intervention systems. We hypothesized that human fetal testis xenografts can recapitulate normal development. METHODS: Human fetal testes (at 9 weeks, n = 4 and 14-18 weeks gestation, n = 6) were xenografted into male nude mice for 6 weeks, with or without hCG treatment of the host, and evaluated for normal cellular development and function using immunohistochemistry, triple immunofluorescence and testosterone assay. The differentiation and proliferation status of germ cells within xenografts was quantified and compared with age-matched controls. RESULTS: Xenografts showed >75% survival with normal morphology. In the first-trimester xenografts seminiferous cord formation was initiated and in first- and second-trimester grafts normal functional development of Sertoli, Leydig and peritubular myoid cells was demonstrated using cell-specific protein markers. Grafts produced testosterone when hosts were treated with hCG (P = 0.004 versus control). Proliferation of germ cells and differentiation from gonocytes (OCT4(+)) into pre-spermatogonia (VASA(+)) occurred in grafts and quantification showed this progressed comparably with age-matched ungrafted controls. CONCLUSIONS: Human fetal testis tissue xenografts demonstrate normal structure, function and development after xenografting, including normal germ cell differentiation. This provides an in vivo system to study normal human fetal testis development and its susceptibility to disruption by exogenous factors (e.g. environmental chemicals). This should provide mechanistic insight into the fetal origins of DSDs and TDS disorders.


Assuntos
Espermatogênese , Espermatozoides/crescimento & desenvolvimento , Testículo/embriologia , Testículo/transplante , Animais , Gonadotropina Coriônica/administração & dosagem , Humanos , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Camundongos Nus , Fator 3 de Transcrição de Octâmero/análise , Epitélio Seminífero/citologia , Epitélio Seminífero/crescimento & desenvolvimento , Epitélio Seminífero/metabolismo , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo , Testosterona/biossíntese , Transplante Heterólogo
11.
Reproduction ; 139(4): 749-57, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089665

RESUMO

The somatic (Sertoli cell (SC), Leydig cell (LC), and peritubular myoid (PTM) cell) cells play key roles in development of the fetal testis. We established monolayer cultures from second trimester human testes and investigated the pattern of expression of cell-lineage characteristic mRNAs. Expression of some SC-associated genes (SRY, SOX9, WT1, GATA4, and SF1) was detectable up to and including passage 3 (P3), while others (anti-Müllerian hormone; desert hedgehog) present prior to dissociation were not expressed in the cultured cells. Transcripts encoding the androgen receptor were expressed but addition of dihydrotestosterone (DHT) had no impact on expression of mRNAs expressed in SC or LC. Total concentrations of mRNAs encoding smooth muscle actin (ACTA2) and desmin increased from P1 to P3; an increasing proportion of the cells in the cultures were immunopositive for ACTA2 consistent with proliferation/differentiation of PTM cells. In conclusion, somatic cell monolayer cultures were established from human fetal testes; these cultures could form the basis for future studies based on isolation of purified populations of somatic cells and manipulation of gene expression that is difficult to achieve with organ culture systems. Our results suggest that fetal SC do not maintain a fully differentiated phenotype in vitro, yet PTM (ACTA2 positive) cells readily adapt to monolayer culture conditions in the presence of DHT. This culture system provides an opportunity to study the impact of regulatory factors on gene expression in PTM cells, a population thought to play a key role in mediating androgen action within the developing testis.


Assuntos
Androgênios/farmacologia , Proliferação de Células/efeitos dos fármacos , Feto/citologia , Células de Sertoli/citologia , Células de Sertoli/fisiologia , Testículo/embriologia , Biomarcadores/análise , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Células Cultivadas , Feminino , Feto/fisiologia , Humanos , Masculino , Ductos Paramesonéfricos/citologia , Ductos Paramesonéfricos/embriologia , Ductos Paramesonéfricos/fisiologia , Especificidade de Órgãos , Gravidez , Segundo Trimestre da Gravidez , Testículo/citologia , Testículo/fisiologia , Estudos de Validação como Assunto
12.
Dev Biol ; 314(1): 189-99, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18166170

RESUMO

Ovarian germ cell survival is dependent upon the formation of primordial follicles, which occurs during fetal life in the human. Activin contributes to germ cell proliferation and survival at this time. SMADs2 and 3 are central elements in the activin signalling pathway and thus indicate sites of activin action. We have investigated the expression and localisation of SMADs2 and 3 in the fetal ovary between 14 and 20 weeks gestation, i.e. preceding and during primordial follicle formation. SMAD3 mRNA expression increased 1.9 fold (P=0.02). SMAD2 and 3 proteins were localised by immunofluorescence to the nuclei of three distinct populations of somatic cells: (a) stromal cells between clusters of germ cells; (b) some somatic cells intermingled with activin beta A-expressing germ cells; (c) pre-granulosa cells surrounding primordial follicles. Germ cells did not express SMAD2 or 3. Activin A increased and follistatin decreased phosphorylation of SMAD2/3 in vitro, and activin increased SMAD2 and decreased KITLG mRNA expression. It therefore appears that somatic cells are the targets for activin signalling in the developing ovary. The effects of activin on germ cells are indirect and include mediation by the kit ligand/c-Kit pathway, rather than being an autocrine germ cell effect.


Assuntos
Ativinas/metabolismo , Células Germinativas/metabolismo , Ovário/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Células-Tronco/biossíntese , Feminino , Feto/metabolismo , Folistatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Ovário/citologia , Ovário/embriologia , Fosforilação , Transdução de Sinais
13.
Cells ; 8(9)2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540096

RESUMO

C-type natriuretic peptide (CNP) is the most conserved member of the mammalian natriuretic peptide family, and is implicated in the endocrine regulation of growth, metabolism and reproduction. CNP is expressed throughout the body, but is particularly abundant in the central nervous system and anterior pituitary gland. Pituitary gonadotropes are regulated by pulsatile release of gonadotropin releasing hormone (GnRH) from the hypothalamus, to control reproductive function. GnRH and CNP reciprocally regulate their respective signalling pathways in αT3-1 gonadotrope cells, but effects of pulsatile GnRH stimulation on CNP expression has not been explored. Here, we examine the sensitivity of the natriuretic peptide system in LßT2 and αT3-1 gonadotrope cell lines to continuous and pulsatile GnRH stimulation, and investigate putative CNP target genes in gonadotropes. Multiplex RT-qPCR assays confirmed that primary mouse pituitary tissue express Nppc,Npr2 (encoding CNP and guanylyl cyclase B (GC-B), respectively) and Furin (a CNP processing enzyme), but failed to express transcripts for Nppa or Nppb (encoding ANP and BNP, respectively). Pulsatile, but not continuous, GnRH stimulation of LßT2 cells caused significant increases in Nppc and Npr2 expression within 4 h, but failed to alter natriuretic peptide gene expression in αT3-1 cells. CNP enhanced expression of cJun, Egr1, Nr5a1 and Nr0b1, within 8 h in LßT2 cells, but inhibited Nr5a1 expression in αT3-1 cells. Collectively, these data show the gonadotrope natriuretic peptide system is sensitive to pulsatile GnRH signalling, and gonadotrope transcription factors are putative CNP-target genes. Such findings represent additional mechanisms by which CNP may regulate reproductive function.


Assuntos
Gonadotrofos/metabolismo , Peptídeo Natriurético Tipo C/metabolismo , Células Cultivadas , Gonadotrofos/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Peptídeo Natriurético Tipo C/genética
14.
Mol Hum Reprod ; 14(9): 501-11, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18676971

RESUMO

Germ cells have a critical role in mediating the generation of genetic diversity and transmitting this information across generations. Furthermore, gametogenesis is unique as a developmental process in that it generates highly-specialized haploid gametes from diploid precursor stem cells through meiosis. Despite the importance of this process, progress in elucidating the molecular mechanisms underpinning mammalian germ cell development has been retarded by the lack of an efficient and reproducible system of in vitro culture for the expansion and trans-meiotic differentiation of germline cells. The dearth of such a culture system has rendered the study of germ cell biology refractory to the application of new high-throughput technologies such as RNA interference, leaving in vivo gene-targeting approaches as the only option to determine the function of genes believed to be involved in gametogenesis. Recent reports detailing the derivation of gametes in vitro from stem cells may provide the first steps in developing new tools to solve this problem. This review considers the developments made in modelling germ cell development using stem cells, and some of the challenges that need to be overcome to make this a useful tool for studying gametogenesis and to realize any future clinical application.


Assuntos
Gametogênese/fisiologia , Células Germinativas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Técnicas de Cultura de Células/métodos , Gametogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Humanos , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/fisiologia
16.
Stem Cell Res ; 21: 193-201, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28434825

RESUMO

Primordial germ cells undergo three significant processes on their path to becoming primary oocytes: the initiation of meiosis, the formation and breakdown of germ cell nests, and the assembly of single oocytes into primordial follicles. However at the onset of meiosis, the germ cell becomes transcriptionally silenced. Consequently translational control of pre-stored mRNAs plays a central role in coordinating gene expression throughout the remainder of oogenesis; RNA binding proteins are key to this regulation. In this review we examine the role of exemplars of such proteins, namely LIN28, DAZL, BOLL and FMRP, and highlight how their roles during germ cell development are critical to oogenesis and the establishment of the primordial follicle pool.


Assuntos
Diferenciação Celular , Autorrenovação Celular , Células Germinativas/citologia , Oogênese , Proteínas de Ligação a RNA/metabolismo , Feminino , Feto/fisiologia , Humanos
17.
PLoS One ; 11(10): e0163987, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27695106

RESUMO

Germ cell development and primordial follicle formation during fetal life is critical in establishing the pool of oocytes that subsequently determines the reproductive lifespan of women. Fragile X-associated primary ovarian insufficiency (FXPOI) is caused by inheritance of the FMR1 premutation allele and approximately 20% of women with the premutation allele develop ovarian dysfunction and premature ovarian insufficiency. However, the underlying disease mechanism remains obscure, and a potential role of FMRP in human ovarian development has not been explored. We have characterised the expression of FMR1 and FMRP in the human fetal ovary at the time of germ cell entry into meiosis through to primordial follicle formation. FMRP expression is exclusively in germ cells in the human fetal ovary. Increased FMRP expression in germ cells coincides with the loss of pluripotency-associated protein expression, and entry into meiosis is associated with FMRP granulation. In addition, we have uncovered FMRP association with components of P-bodies and stress granules, suggesting it may have a role in mRNA metabolism at the time of onset of meiosis. Therefore, this data support the hypothesis that FMRP plays a role regulating mRNAs during pivotal maturational processes in fetal germ cells, and ovarian dysfunction resulting from FMR1 premutation may have its origins during these stages of oocyte development.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Meiose , Oócitos/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas , Humanos , Meiose/genética , Organogênese/genética , Ovário/embriologia , Ovário/metabolismo , Insuficiência Ovariana Primária/genética , Insuficiência Ovariana Primária/metabolismo
18.
J Clin Endocrinol Metab ; 100(9): E1197-205, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26192875

RESUMO

CONTEXT: Fetal ovarian development and primordial follicle formation underpin future female fertility. Prokineticin (PROK) ligands regulate cell survival, proliferation, and angiogenesis in adult reproductive tissues including the ovary. However, their expression and function during fetal ovarian development remains unclear. OBJECTIVE: This study aimed to investigate expression and localization of the PROK ligands, receptors, and their downstream transcriptional targets in the human fetal ovary. SETTING: This study was conducted at the University of Edinburgh. PARTICIPANTS: Ovaries were collected from 37 morphologically normal human fetuses. DESIGN AND MAIN OUTCOME MEASURES: mRNA and protein expression of PROK ligands and receptors was determined in human fetal ovaries using qRT-PCR, immunoblotting, and immunohistochemistry. Functional studies were performed using a human germ cell tumor line (TCam-2) stably transfected with Prokineticin receptor 1 (PROKR1). RESULTS: Expression of PROK1 and PROKR1 was significantly higher in mid-gestation ovaries (17-20 wk) than at earlier gestations (8-11 and 14-16 wk). PROK2 significantly increased across the gestations examined. PROKR2 expression remained unchanged. PROK ligand and receptor proteins were predominantly localized to germ cells (including oocytes within primordial follicles) and endothelial cells, indicating these cell types to be the targets of PROK signaling in the human fetal ovary. PROK1 treatment of a germ cell line stably expressing PROKR1 resulted in ERK phosphorylation and elevated COX2 expression. CONCLUSIONS: Developmental changes in expression and regulation of COX2 and phosphorylated ERK (pERK) by PROK1 suggest that PROK ligands may be novel regulators of germ cell development in the human fetal ovary, interacting within a network of growth and survival factors prior to primordial follicle formation.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Hormônios Gastrointestinais/metabolismo , Células Germinativas/metabolismo , Neuropeptídeos/metabolismo , Ovário/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/metabolismo , Ciclo-Oxigenase 2/genética , Feminino , Desenvolvimento Fetal , Hormônios Gastrointestinais/genética , Hormônios Gastrointestinais/farmacologia , Células Germinativas/efeitos dos fármacos , Humanos , Neuropeptídeos/genética , Ovário/embriologia , Fosforilação/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/genética , Fator de Crescimento do Endotélio Vascular Derivado de Glândula Endócrina/farmacologia
19.
PLoS One ; 10(3): e0119819, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25790371

RESUMO

During human fetal ovary development, the process of primordial follicle formation is immediately preceded by a highly dynamic period of germ cell and somatic cell reorganisation. This is regulated by germ-cell specific transcription regulators, by the conserved RNA binding proteins DAZL and BOLL and by secreted growth factors of the TGFß family, including activin ßA: these all show changing patterns of expression preceding follicle formation. In mice, the transcription factor Nobox is essential for follicle formation and oocyte survival, and NOBOX regulates the expression of GDF9 in humans. We have therefore characterised the expression of GDF9 in relation to these known key factors during follicle formation in the human fetal ovary. mRNA levels of GDF9, BMP15 and NOBOX were quantified by qRT-PCR and showed dramatic increases across gestation. GDF9 protein expression was localised by immunohistochemistry to the same population of germ cells as those expressing activin ßA prior to follicle formation but did not co-localise with either BOLL or DAZL. A novel NOBOX isoform was identified in fetal ovary that was shown to be capable of up-regulating the GDF9 promoter in reporter assays. Thus, during oogenesis in humans, oocytes go through a dynamic and very sharply demarcated sequence of changes in expression of these various proteins, even within individual germ cell nests, likely to be of major functional significance in determining selective germ cell survival at this key stage in ovarian development. Transcriptional variation may contribute to the range of age of onset of POI in women with NOBOX mutations.


Assuntos
Fator 9 de Diferenciação de Crescimento/metabolismo , Proteínas de Homeodomínio/metabolismo , Oócitos/metabolismo , Ovário/metabolismo , Fatores de Transcrição/metabolismo , Ativinas/metabolismo , Sequência de Aminoácidos , Animais , Proteína Morfogenética Óssea 15/genética , Proteína Morfogenética Óssea 15/metabolismo , Feminino , Feto/metabolismo , Células Germinativas/metabolismo , Fator 9 de Diferenciação de Crescimento/genética , Células HEK293 , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Dados de Sequência Molecular , Folículo Ovariano/crescimento & desenvolvimento , Ovário/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Regulação para Cima
20.
Methods Mol Biol ; 957: 59-75, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23138944

RESUMO

The development of primordial germ cells into oocytes within primordial follicles involves a complex sequence of proliferation, developmental commitment, entry and arrest in meiosis, and association with surrounding somatic cells. These processes occur over the first few months of development in the human, with multiple stages of development present at any one time point. Immunohistochemistry has been hugely instructive in identifying the various key stages in ovarian development, by allowing simultaneous visualization of different stages of germ cell development, and their spatial arrangement. These studies allow comparison with other species and have identified key differences between human and murine ovarian development as well as giving a basis for functional studies. In this chapter we describe the main methodologies used in immunohistochemistry, using both chromogen and fluorescence approaches, and both single and double antigen detection.


Assuntos
Feto , Imuno-Histoquímica/métodos , Ovário/citologia , Ovário/embriologia , Amidinas/metabolismo , Precipitação Química , Compostos Cromogênicos/metabolismo , Feminino , Imunofluorescência , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA