Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun Health ; 40: 100819, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39161876

RESUMO

Background: Chronic inflammation is recognised as an important component of Alzheimer's disease (AD), yet its relationship with cognitive decline, sex-differences, and age is not well understood. This study investigated the relationship between inflammatory markers, cognition, sex, and age in individuals with mild cognitive impairment (MCI) and AD. Methods: A systematic review was performed to identify case-control studies which measured cognitive function and inflammatory markers in serum, plasma, and cerebrospinal fluid in individuals with MCI or AD compared with healthy control (HC) participants. Meta-analysis was performed with Hedges' g calculated in a random effects model. Meta-regression was conducted using age, sex, and mini-mental status exam (MMSE) values. Results: A total of 106 studies without a high risk of bias were included in the meta-analysis including 18,145 individuals: 5625 AD participants, 3907 MCI participants, and 8613 HC participants. Combined serum and plasma meta-analysis found that IL1ß, IL6, IL8, IL18, CRP, and hsCRP were significantly raised in individuals with AD compared to HC. In CSF, YKL40, and MCP-1 were raised in AD compared to HC. YKL40 was also raised in MCI compared to HC. Meta-regression analysis highlighted several novel findings: MMSE was negatively correlated with IL6 and positively correlated with IL1α in AD, while in MCI studies, MMSE was negatively correlated with IL8 and TNFα. Meta-regression also revealed sex-specific differences in levels of IL1α, IL4, IL6, IL18, hsCRP, MCP-1, and YKL-40 across AD and MCI studies, and age was found to account for heterogeneity of CRP, MCP-1, and IL4 in MCI and AD. Conclusion: Elevated levels of IL6 and YKL40 may reflect microglial inflammatory activity in both MCI and AD. Systemic inflammation may interact with the central nervous system, as poor cognitive function in individuals with AD and MCI was associated with higher levels of serum and plasma proinflammatory cytokines IL6 and TNFα. Moreover, variations of systemic inflammation between males and females may be modulated by sex-specific hormonal changes, such as declining oestrogen levels in females throughout the menopause transition. Longitudinal studies sampling a range of biospecimen types are needed to elucidate the nuances of the relationship between inflammation and cognition in individuals with MCI and AD, and understand how systemic and central inflammation differentially impact cognitive function.

2.
Front Neurosci ; 17: 1127065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260849

RESUMO

Introduction: Exercise is recognized as a modifiable lifestyle factor that can mitigate cognitive decline and dementia risk. While the benefits of exercise on cognitive aging have been reported on extensively, neuronal effects in adults experiencing cognitive decline have not been systematically synthesized. The aim of this systematic review was to assess the effects of exercise on cognition and brain function in people with cognitive decline associated with dementia risk. Method: A systematic search was conducted for randomized controlled trials of ≥ 4 weeks exercise (aerobic, resistance, or mind-body) that assessed cognition and brain function using neuroimaging and neurophysiological measures in people with subjective or objective cognitive decline. Study characteristics and brain function effects were narratively synthesized, while domain-specific cognitive performance was subjected to meta-analysis. Study quality was also assessed. Results: 5,204 records were identified and 12 unique trials met the eligibility criteria, representing 646 adults classified with cognitive frailty, mild or vascular cognitive impairment. Most interventions involved 40-minute sessions conducted 3 times/week. Exercise improved global cognition (g = -0.417, 95% CI, -0.694 to -0.140, p = 0.003, I2 = 43.56%), executive function (g = -0.391, 95% CI, -0.651 to -0.131, p = 0.003, I2 = 13.28%), but not processing speed or general short-term memory (both p >0.05). Across fMRI and ERP studies, significant neuronal adaptations were found with exercise cf. control throughout the brain and were linked with improved global cognition, memory, and executive function. Cerebral blood flow was also found to improve with 24 weeks of exercise, but was not linked with cognitive changes. Discussion: The cognitive improvements associated with exercise are likely driven by increased metabolic activity, cerebrovascular mechanisms, and neuroplasticity throughout the brain. Our paper shows the promise in, and need for, high-quality trials integrating cognitive and brain function measures to elucidate the functional relationship between exercise and brain health in populations with a high risk of dementia. Systematic review registration: PROSPERO, identifier: CRD42022291843.

3.
Neurosci Lett ; 751: 135807, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705934

RESUMO

Reduced cerebellar volume and motor dysfunction have previously been observed in the GFAP-IL6 murine model of chronic neuroinflammation. This study aims to extend these findings by investigating the effect of microglial activation and ageing on the total number of Purkinje cells and the morphology of their dendritic arborization. Through comparison of transgenic GFAP-IL6 mice and their wild-type counterparts at the ages of 12 and 24-months, we were able to investigate the effects of ageing and chronic microglial activation on Purkinje cells. Unbiased stereology was used to estimate the number of microglia in Iba1+ stained tissue and Purkinje cells in calbindin stained tissue. Morphological analyses were made using 3D reconstructions of images acquired from the Golgi-stained cerebellar tissue. We found that the total number of microglia increased by approximately 5 times in the cerebellum of GFAP-IL6 mice compared to their WT littermates. The number of Purkinje cells decreased by as much as 50 % in aged wild type mice and 83 % in aged GFAP-IL6 mice. The remaining Purkinje cells in these cohorts were found to have significant reductions in their total dendritic length and number of branching points, indicating how the complexity of the Purkinje cell dendritic arbor reduces through age and inflammation. GFAP-IL6 mice, when compared to WT mice, had higher levels of microglial activation and more profound neurodegenerative changes in the cerebellum. The presence of constitutive IL6 production, driving chronic neuroinflammation, may account for these neurodegenerative changes in GFAP-IL6 mice.


Assuntos
Envelhecimento/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Células de Purkinje/citologia , Envelhecimento/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Proteína Glial Fibrilar Ácida/genética , Inflamação/metabolismo , Interleucina-6/genética , Camundongos , Microglia/citologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia
4.
Front Cell Neurosci ; 14: 577912, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192323

RESUMO

Aging is a complex biological process that increases the risk of age-related cognitive degenerative diseases such as dementia, including Alzheimer's disease (AD), Lewy Body Dementia (LBD), and mild cognitive impairment (MCI). Even non-pathological aging of the brain can involve chronic oxidative and inflammatory stress, which disrupts the communication and balance between the brain and the immune system. There has been an increasingly strong connection found between chronic neuroinflammation and impaired memory, especially in AD. While microglia and astrocytes, the resident immune cells of the central nervous system (CNS), exerting beneficial effects during the acute inflammatory phase, during chronic neuroinflammation they can become more detrimental. Central cholinergic circuits are involved in maintaining normal cognitive function and regulating signaling within the entire cerebral cortex. While neuronal-glial cholinergic signaling is anti-inflammatory and anti-oxidative, central cholinergic neuronal degeneration is implicated in impaired learning, memory sleep regulation, and attention. Although there is evidence of cholinergic involvement in memory, fewer studies have linked the cholinergic anti-inflammatory and anti-oxidant pathways to memory processes during development, normal aging, and disease states. This review will summarize the current knowledge of cholinergic effects on microglia and astroglia, and their role in both anti-inflammatory and anti-oxidant mechanisms, concerning normal aging and chronic neuroinflammation. We provided details on how stimulation of α7 nicotinic acetylcholine (α7nACh) receptors can be neuroprotective by increasing amyloid-ß phagocytosis, decreasing inflammation and reducing oxidative stress by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and decreasing the release of pro-inflammatory cytokines. There is also evidence for astroglial α7nACh receptor stimulation mediating anti-inflammatory and antioxidant effects by inhibiting the nuclear factor-κB (NF-κB) pathway and activating the Nrf2 pathway respectively. We conclude that targeting cholinergic glial interactions between neurons and glial cells via α7nACh receptors could regulate neuroinflammation and oxidative stress, relevant to the treatment of several neurodegenerative diseases.

5.
Nat Commun ; 5: 5535, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25417810

RESUMO

It has been suggested that deficient protein trafficking to the cell membrane is the dominant mechanism associated with type 2 Long QT syndrome (LQT2) caused by Kv11.1 potassium channel missense mutations, and that for many mutations the trafficking defect can be corrected pharmacologically. However, this inference was based on expression of a small number of Kv11.1 mutations. We performed a comprehensive analysis of 167 LQT2-linked missense mutations in four Kv11.1 structural domains and found that deficient protein trafficking is the dominant mechanism for all domains except for the distal carboxy-terminus. Also, most pore mutations--in contrast to intracellular domain mutations--were found to have severe dominant-negative effects when co-expressed with wild-type subunits. Finally, pharmacological correction of the trafficking defect in homomeric mutant channels was possible for mutations within all structural domains. However, pharmacological correction is dramatically improved for pore mutants when co-expressed with wild-type subunits to form heteromeric channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/genética , Ativação do Canal Iônico/genética , Síndrome de Romano-Ward/genética , Linhagem Celular , Membrana Celular/metabolismo , Análise Mutacional de DNA , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Técnicas de Patch-Clamp , Bloqueadores dos Canais de Potássio/farmacologia , Síndrome de Romano-Ward/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA