Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34554085

RESUMO

Current antiviral drugs are limited because of their adverse side effects and increased rate of resistance. In recent decades, much scientific effort has been invested in the discovery of new synthetic and natural compounds with promising antiviral properties. Among this new generation of compounds, antimicrobial peptides with antiviral activity have been described and are attracting attention due to their mechanism of action and biological properties. To understand the potential of antiviral peptides (AVPs), we analyse the antiviral activity of well-known AVP families isolated from different natural sources, discuss their physical-chemical properties, and demonstrate how AVP databases can guide us to design synthetic AVPs with better therapeutic properties. All considerations in this sphere of antiviral therapy clearly demonstrate the remarkable contribution that AVPs may make in conquering old as well as newly emerging viruses that plague humanity.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Vírus/efeitos dos fármacos , Bases de Dados de Proteínas , Desenho de Fármacos , Descoberta de Drogas , Interações Hidrofóbicas e Hidrofílicas , Aprendizado de Máquina
2.
Mol Divers ; 25(4): 2045-2052, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32372249

RESUMO

A series of thirty-one new compounds were synthesized and evaluated for their anti-HIV-1 and cytotoxicity activity. Of these, twelve were found to be inhibitors of HIV replications in primary human lymphocytes with median effective concentration (EC50) values < 20 µM. However, most of the compounds demonstrated cytotoxicity in different cells. Our structure activity relationship study identified different patterns. In the series of 2-aryl pyrrolidines, comparing the activity of the compounds containing 2-aryl substituents we observed that compounds 1c, 1f-j, 2f,g with benzyloxyphenyl and isopropoxy groups were more potent. Compounds 1g-j, 2f,g, in which the 1-aryl moiety contained a methyl group in 3,5- or 4-positions also showed high activity. In the series of compounds containing the amide, aminomethyl and nitrile groups we observed an increase in activity with C(O)NH2 < CH2NH2 < CN. In the series of 2-pyrimidinyl pyrrolidines, the best results were demonstrated with derivatives 5e and 5f, in which the presence of a benzyl fragment in 1st and aniline fragment in 6th positions of pyrimidine ring we observed an increase in anti-HIV activity. Molecular docking studies of synthesized compounds with HIV-1 reverse transcriptase enzyme were performed. Binding energies of ligands were estimated, and the interacting amino acids of HIV-1 reverse transcriptase protein were shown. Based on corroborative results of the molecular docking studies and in vitro experiments, we suggest that three groups of synthesized ligands (1c, 1f-i), (2f,g), (5e,f, 7) are of high interest for further research on new drugs against HIV. General structure of synthesized 2-aryl and 2-pyrimidinyl pyrrolidines.


Assuntos
Simulação de Acoplamento Molecular
3.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638829

RESUMO

A new series of 4-(1H-benzo[d]imidazol-1-yl)pyrimidin-2-amine linked sulfonamide derivatives 12a-n was designed and synthesized according to the structure of well-established V600EBRAF inhibitors. The terminal sulfonamide moiety was linked to the pyrimidine ring via either ethylamine or propylamine bridge. The designed series was tested at fixed concentration (1 µM) against V600EBRAF, finding that 12e, 12i and 12l exhibited the strongest inhibitory activity among all target compounds and 12l had the lowest IC50 of 0.49 µM. They were further screened on NCI 60 cancer cell lines to reveal that 12e showed the most significant growth inhibition against multiple cancer cell lines. Therefore, cell cycle analysis of 12e was conducted to investigate the effect on cell cycle progression. Finally, virtual docking studies was performed to gain insights for the plausible binding modes of vemurafenib, 12i, 12e and 12l.


Assuntos
Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Simulação de Acoplamento Molecular , Mutação de Sentido Incorreto , Neoplasias , Proteínas Proto-Oncogênicas B-raf , Sulfonamidas , Substituição de Aminoácidos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia
4.
Molecules ; 26(12)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205768

RESUMO

Since December 2019, novel coronavirus disease 2019 (COVID-19) pandemic has caused tremendous economic loss and serious health problems worldwide. In this study, we investigated 14 natural compounds isolated from Amphimedon sp. via a molecular docking study, to examine their ability to act as anti-COVID-19 agents. Moreover, the pharmacokinetic properties of the most promising compounds were studied. The docking study showed that virtually screened compounds were effective against the new coronavirus via dual inhibition of SARS-CoV-2 RdRp and the 3CL main protease. In particular, nakinadine B (1), 20-hepacosenoic acid (11) and amphimedoside C (12) were the most promising compounds, as they demonstrated good interactions with the pockets of both enzymes. Based on the analysis of the molecular docking results, compounds 1 and 12 were selected for molecular dynamics simulation studies. Our results showed Amphimedon sp. to be a rich source for anti-COVID-19 metabolites.


Assuntos
Produtos Biológicos/química , Produtos Biológicos/farmacologia , Proteases 3C de Coronavírus/química , Poríferos/química , Poríferos/metabolismo , RNA Polimerase Dependente de RNA/química , SARS-CoV-2/efeitos dos fármacos , Amino Açúcares/química , Amino Açúcares/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacocinética , Biologia Computacional , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Piridinas/química , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/enzimologia , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19
5.
Molecules ; 26(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466812

RESUMO

BACKGROUND: Cyclin-dependent kinases (CDKs) regulate mammalian cell cycle progression and RNA transcription. Based on the structural analysis of previously reported CDK2 inhibitors, a new compound with 3-hydrazonoindolin-2-one scaffold (HI 5) was well designed, synthesized, and biologically evaluated as a promising anti-breast cancer hit compound. METHODS: The potential anti-cancerous effect of HI 5 was evaluated using cytotoxicity assay, flow cytometric analysis of apoptosis and cell cycle distribution, ELISA immunoassay, in vitro CDK2/cyclin A2 activity, and molecular operating environment (MOE) virtual docking studies. RESULTS: The results revealed that HI 5 exhibits pronounced CDK2 inhibitory activity and cytotoxicity in human breast cancer MCF-7 cell line. The cytotoxicity of HI 5 was found to be intrinsically mediated apoptosis, which in turn, is associated with low Bcl-2 expression and high activation of caspase 3 and p53. Besides, HI 5 blocked the proliferation of the MCF-7 cell line and arrested the cell cycle at the G2/M phase. The docking studies did not confirm which one of geometric isomers (syn and anti) is responsible for binding affinity and intrinsic activity of HI 5. However, the molecular dynamic studies have confirmed that the syn-isomer has more favorable binding interaction and thus is responsible for CDK2 inhibitory activity. DISCUSSION: These findings displayed a substantial basis of synthesizing further derivatives based on the 3-hydrazonoindolin-2-one scaffold for favorable targeting of breast cancer.


Assuntos
Apoptose , Neoplasias da Mama/tratamento farmacológico , Simulação por Computador , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Desenho de Fármacos , Hidrazonas/farmacologia , Indóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Feminino , Humanos , Hidrazonas/química , Indóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Células Tumorais Cultivadas
6.
Vaccines (Basel) ; 12(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38932388

RESUMO

The escalating global healthcare challenge posed by Alzheimer's Disease (AD) and compounded by the lack of effective treatments emphasizes the urgent need for innovative approaches to combat this devastating disease. Currently, passive and active immunotherapies remain the most promising strategy for AD. FDA-approved lecanemab significantly reduces Aß aggregates from the brains of early AD patients administered biweekly with this humanized monoclonal antibody. Although the clinical benefits noted in these trials have been modest, researchers have emphasized the importance of preventive immunotherapy. Importantly, data from immunotherapy studies have shown that antibody concentrations in the periphery of vaccinated people should be sufficient for targeting Aß in the CNS. To generate relatively high concentrations of antibodies in vaccinated people at risk of AD, we generated a universal vaccine platform, MultiTEP, and, based on it, developed a DNA vaccine, AV-1959D, targeting pathological Aß, completed IND enabling studies, and initiated a Phase I clinical trial with early AD volunteers. Our current pilot study combined our advanced MultiTEP technology with a novel mRNA approach to develop an mRNA vaccine encapsulated in lipid-based nanoparticles (LNPs), AV-1959LR. Here, we report our initial findings on the immunogenicity of 1959LR in mice and non-human primates, comparing it with the immunogenicity of its DNA counterpart, AV-1959D.

7.
Pathogens ; 13(6)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921817

RESUMO

Within the last two decades, SARS-CoV-2 was the third zoonotic severe acute respiratory betacoronavirus (sarbecovirus) to infect humans, following SARS and MERS. The disruptions caused by the pandemic underscore the need for a universal vaccine against respiratory betacoronaviruses. Our group previously developed the universal platform for vaccine development, MultiTEP, which has been utilized in this study to generate a range of SARS-CoV-2 epitope vaccine candidates. We prepared and characterized 18 vaccines incorporating small peptide fragments from SARS-CoV-2 Spike protein fused with the MultiTEP sequence using overlapping PCR. Wild-type mice were immunized intramuscularly with the immunogen formulated in AdvaxCpG adjuvant. Serum antibodies were detected by ELISA, surrogate neutralization, and pseudovirus neutralization assays. Finally, the most promising vaccine candidate was administered to three non-human primates. All vaccines generated high titers of spike-binding IgG antibodies. However, only three vaccines generated antibodies that blocked RBD binding to the ACE2 receptor in a surrogate virus neutralization assay. However, none of the vaccines induced antibodies able to neutralize pseudotype viruses, including after the administration of the lead vaccine to NHPs. MultiTEP-based COVID-19 vaccines elicited robust, IgG-binding responses against the Spike protein in mice and non-human primates, but these antibodies were not neutralizing, underscoring the need to refine this approach further.

8.
Antiviral Res ; 217: 105681, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499699

RESUMO

We employed an advanced virtual screening (AVS) approach to identify potential inhibitors of human dihydroorotate dehydrogenase (DHODH), a validated target for development of broad-spectrum antivirals. We screened a library of 495118 compounds and identified 495 compounds that exhibited better binding scores than the reference ligands involved in the screening. From the top 100 compounds, we selected 28 based on their consensus docking scores and structural novelty. Then, we conducted in vitro experiments to investigate the antiviral activity of selected compounds on HSV-1 infection, which is susceptible to DHODH inhibitors. Among the tested compounds, seven displayed statistically significant antiviral effects, with Comp 19 being the most potent inhibitor. We found that Comp 19 exerted its antiviral effect in a dose-dependent manner (IC50 = 1.1 µM) and exhibited the most significant antiviral effect when added before viral infection. In the biochemical assay, Comp 19 inhibited human DHODH in a dose-dependent manner with the IC50 value of 7.3 µM. Long-timescale molecular dynamics simulations (1000 ns) revealed that Comp 19 formed a very stable complex with human DHODH. Comp 19 also displayed broad-spectrum antiviral activity and suppressed cytokine production in THP-1 cells. Overall, our study provides evidence that AVS could be successfully implemented to discover novel DHODH inhibitors with broad-spectrum antiviral activity.


Assuntos
Antivirais , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Humanos , Antivirais/farmacologia , Antivirais/química , Di-Hidro-Orotato Desidrogenase , Inibidores Enzimáticos/farmacologia
9.
PLoS One ; 17(9): e0272065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36094927

RESUMO

Poly (ADP-ribose) polymerase 1 (PARP1) has high therapeutic value as biomolecular target for research and development of small molecules with antineoplastic activity, since it is upregulated in many cancers, especially in ovarian and BRCA 1/2 mutated breast cancers. Decades of investigation of PARP inhibitors (PARPi) have led to the approval of several drug compounds, however clinical application of PARPi in cancer therapy is limited due to a number of factors, including low selectivity, weak affinity and undesired side effects. Thus, identification of novel drug-like chemical compounds with alternatives to the known PARPi chemical scaffolds, binding modes and interaction patterns with amino acid residues in the active site is of high therapeutic importance. In this study we applied a combination of ligand- and structure-based virtual screening approaches with the goal of identification of novel potential PARPi.


Assuntos
Neoplasias da Mama , Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias da Mama/tratamento farmacológico , Feminino , Humanos , Ligantes , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Pesquisa
10.
Sci Rep ; 11(1): 11417, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075175

RESUMO

The inconsistencies in the performance of the virtual screening (VS) process, depending on the used software and structural conformation of the protein, is a challenging issue in the drug design and discovery field. Varying performance, especially in terms of early recognition of the potential hit compounds, negatively affects the whole process and leads to unnecessary waste of the time and resources. Appropriate application of the ensemble docking and consensus-scoring approaches can significantly increase reliability of the VS results. Dihydroorotate dehydrogenase (DHODH) is a key enzyme in the pyrimidine biosynthesis pathway. It is considered as a valuable therapeutic target in cancer, autoimmune and viral diseases. Based on the conducted benchmark study and analysis of the effect of different combinations of the applied methods and approaches, here we suggested a structure-based virtual screening (SBVS) workflow that can be used to increase the reliability of VS.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Humanos , Modelos Moleculares , Conformação Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química
11.
Life (Basel) ; 11(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34685441

RESUMO

The vascular endothelial growth factor receptor 2 (VEGFR-2) is largely recognized as a potent therapeutic molecular target for the development of angiogenesis-related tumor treatment. Tumor growth, metastasis and multidrug resistance highly depends on the angiogenesis and drug discovery of the potential small molecules targeting VEGFR-2, with the potential anti-angiogenic activity being of high interest to anti-cancer research. Multiple small molecule inhibitors of the VEGFR-2 are approved for the treatment of different type of cancers, with one of the most recent, tivozanib, being approved by the FDA for the treatment of relapsed or refractory advanced renal cell carcinoma (RCC). However, the endogenous and acquired resistance of the protein, toxicity of compounds and wide range of side effects still remain critical issues, which lead to the short-term clinical effects and failure of antiangiogenic drugs. We applied a combination of computational methods and approaches for drug design and discovery with the goal of finding novel, potential and small molecule inhibitors of VEGFR2, as alternatives to the known inhibitors' chemical scaffolds and components. From studying several of these compounds, the derivatives of pyrido[1,2-a]pyrimidin-4-one and isoindoline-1,3-dione in particular were identified.

12.
Emerg Microbes Infect ; 10(1): 783-796, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33706677

RESUMO

African swine fever virus (ASFV) is the causal agent of a fatal disease of domestic swine for which no effective antiviral drugs are available. Recently, it has been shown that microtubule-targeting agents hamper the infection cycle of different viruses. In this study, we conducted in silico screening against the colchicine binding site (CBS) of tubulin and found three new compounds with anti-ASFV activity. The most promising antiviral compound (6b) reduced ASFV replication in a dose-dependent manner (IC50 = 19.5 µM) with no cellular (CC50 > 500 µM) and animal toxicity (up to 100 mg/kg). Results also revealed that compound 6b interfered with ASFV attachment, internalization and egress, with time-of-addition assays, showing that compound 6b has higher antiviral effects when added within 2-8 h post-infection. This compound significantly inhibited viral DNA replication and disrupted viral protein synthesis. Experiments with ASFV-infected porcine macrophages disclosed that antiviral effects of the compound 6b were similar to its effects in Vero cells. Tubulin polymerization assay and confocal microscopy demonstrated that compound 6b promoted tubulin polymerization, acting as a microtubule-stabilizing, rather than a destabilizing agent in cells. In conclusion, this work emphasizes the idea that microtubules can be targets for drug development against ASFV.


Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Febre Suína Africana/virologia , Antivirais/farmacologia , Tubulina (Proteína)/metabolismo , Febre Suína Africana/tratamento farmacológico , Febre Suína Africana/metabolismo , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Animais , Chlorocebus aethiops , Microtúbulos/química , Microtúbulos/genética , Microtúbulos/metabolismo , Estabilidade Proteica , Suínos , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Células Vero , Replicação Viral/efeitos dos fármacos
13.
Sci Rep ; 11(1): 15516, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330958

RESUMO

Human carbonic anhydrase XII (hCA XII) isozyme is of high therapeutic value as a pharmacological target and biomarker for different types of cancer. The hCA XII is one of the crucial effectors that regulates extracellular and intracellular pH and affects cancer cell proliferation, invasion, growth and metastasis. Despite the fact that interaction features of hCAs inhibitors with the catalytic site of the enzyme are well described, lack in the selectivity of the traditional hCA inhibitors based on the sulfonamide group or related motifs is an urgent issue. Moreover, drugs containing sulfanomides can cause sulfa allergies. Thus, identification of novel non-classical inhibitors of hCA XII is of high priority and is currently the subject of a vast field of study. This study was devoted to the identification of novel potential hCA XII inhibitors using comprehensive set of computational approaches for drug design discovery: generation and validation of structure- and ligand-based pharmacophore models, molecular docking, re-scoring of virtual screening results with MMGBSA, molecular dynamics simulations, etc. As the results of the study several compounds with alternative to classical inhibitors chemical scaffolds, in particular one of coumarins derivative, have been identified and are of high interest as potential non-classical hCA XII inhibitors.


Assuntos
Anidrases Carbônicas/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Quimioinformática , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA