Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
Nature ; 615(7951): 231-236, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813971

RESUMO

Observation of strong correlations and superconductivity in twisted-bilayer graphene1-4 has stimulated tremendous interest in fundamental and applied physics5-8. In this system, the superposition of two twisted honeycomb lattices, generating a moiré pattern, is the key to the observed flat electronic bands, slow electron velocity and large density of states9-12. Extension of the twisted-bilayer system to new configurations is highly desired, which can provide exciting prospects to investigate twistronics beyond bilayer graphene. Here we demonstrate a quantum simulation of superfluid to Mott insulator transition in twisted-bilayer square lattices based on atomic Bose-Einstein condensates loaded into spin-dependent optical lattices. The lattices are made of two sets of laser beams that independently address atoms in different spin states, which form the synthetic dimension accommodating the two layers. The interlayer coupling is highly controllable by a microwave field, which enables the occurrence of a lowest flat band and new correlated phases in the strong coupling limit. We directly observe the spatial moiré pattern and the momentum diffraction, which confirm the presence of two forms of superfluid and a modified superfluid to insulator transition in twisted-bilayer lattices. Our scheme is generic and can be applied to different lattice geometries and for both boson and fermion systems. This opens up a new direction for exploring moiré physics in ultracold atoms with highly controllable optical lattices.

2.
Nature ; 602(7895): 68-72, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110757

RESUMO

Interactions in many-body physical systems, from condensed matter to high-energy physics, lead to the emergence of exotic particles. Examples are mesons in quantum chromodynamics and composite fermions in fractional quantum Hall systems, which arise from the dynamical coupling between matter and gauge fields1,2. The challenge of understanding the complexity of matter-gauge interaction can be aided by quantum simulations, for which ultracold atoms offer a versatile platform via the creation of artificial gauge fields. An important step towards simulating the physics of exotic emergent particles is the synthesis of artificial gauge fields whose state depends dynamically on the presence of matter. Here we demonstrate deterministic formation of domain walls in a stable Bose-Einstein condensate with a gauge field that is determined by the atomic density. The density-dependent gauge field is created by simultaneous modulations of an optical lattice potential and interatomic interactions, and results in domains of atoms condensed into two different momenta. Modelling the domain walls as elementary excitations, we find that the domain walls respond to synthetic electric field with a charge-to-mass ratio larger than and opposite to that of the bare atoms. Our work offers promising prospects to simulate the dynamics and interactions of previously undescribed excitations in quantum systems with dynamical gauge fields.

3.
Nature ; 592(7856): 708-711, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33911270

RESUMO

Molecular quantum gases (that is, ultracold and dense molecular gases) have many potential applications, including quantum control of chemical reactions, precision measurements, quantum simulation and quantum information processing1-3. For molecules, to reach the quantum regime usually requires efficient cooling at high densities, which is frequently hindered by fast inelastic collisions that heat and deplete the population of molecules4,5. Here we report the preparation of two-dimensional Bose-Einstein condensates (BECs) of spinning molecules by inducing pairing interactions in an atomic condensate near a g-wave Feshbach resonance6. The trap geometry and the low temperature of the molecules help to reduce inelastic loss, ensuring thermal equilibrium. From the equation-of-state measurement, we determine the molecular scattering length to be + 220(±30) Bohr radii (95% confidence interval). We also investigate the unpairing dynamics in the strong coupling regime and find that near the Feshbach resonance the dynamical timescale is consistent with the unitarity limit. Our work demonstrates the long-sought transition between atomic and molecular condensates, the bosonic analogue of the crossover from a BEC to a Bardeen-Cooper-Schrieffer (BCS) superfluid in a Fermi gas7-9. In addition, our experiment may shed light on condensed pairs with orbital angular momentum, where a novel anisotropic superfluid with non-zero surface current is predicted10,11, such as the A phase of 3He.

4.
Nature ; 568(7750): 61-64, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944492

RESUMO

In high-energy and condensed-matter physics, particle exchange has an essential role in the understanding of long-range interactions and correlations. For example, the exchange of massive bosons leads to the Yukawa potential1,2, and phonon exchange between electrons gives rise to Cooper pairing in superconductors3. Here we show that, when a Bose-Einstein condensate of caesium atoms is embedded in a degenerate Fermi gas of lithium atoms, interspecies interactions can give rise to an effective trapping potential, damping, and attractive boson-boson interactions mediated by fermions. The latter, which is related to the Ruderman-Kittel-Kasuya-Yosida mechanism4, results from a coherent three-body scattering process. Such mediated interactions are expected to form new magnetic phases5 and supersolids6. We show that under suitable conditions, the mediated interactions can convert a stable Bose-Einstein condensate into a train of 'Bose-Fermi solitons'7,8. The predicted long-range nature of the mediated interactions opens up the possibility of correlating distant atoms and preparing new quantum phases.

5.
J Appl Clin Med Phys ; : e14400, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831639

RESUMO

BACKGROUND: Quality assurance (QA) for ultra-high dose rate (UHDR) irradiation is a crucial aspect in the emerging field of FLASH radiotherapy (FLASH-RT). This innovative treatment approach delivers radiation at UHDR, demanding careful adoption of QA protocols and procedures. A comprehensive understanding of beam properties and dosimetry consistency is vital to ensure the safe and effective delivery of FLASH-RT. PURPOSE: To develop a comprehensive pre-treatment QA program for cyclotron-based proton pencil beam scanning (PBS) FLASH-RT. Establish appropriate tolerances for QA items based on this study's outcomes and TG-224 recommendations. METHODS: A 250 MeV proton spot pattern was designed and implemented using UHDR with a 215nA nozzle beam current. The QA pattern that covers a central uniform field area, various spot spacings, spot delivery modes and scanning directions, and enabling the assessment of absolute, relative and temporal dosimetry QA parameters. A strip ionization chamber array (SICA) and an Advanced Markus chamber were utilized in conjunction with a 2 cm polyethylene slab and a range (R80) verification wedge. The data have been monitored for over 3 months. RESULTS: The relative dosimetries were compliant with TG-224. The variations of temporal dosimetry for scanning speed, spot dwell time, and spot transition time were within ± 1 mm/ms, ± 0.2 ms, and ± 0.2 ms, respectively. While the beam-to-beam absolute output on the same day reached up to 2.14%, the day-to-day variation was as high as 9.69%. High correlation between the absolute dose and dose rate fluctuations were identified. The dose rate of the central 5 × 5 cm2 field exhibited variations within 5% of the baseline value (155 Gy/s) during an experimental session. CONCLUSIONS: A comprehensive QA program for FLASH-RT was developed and effectively assesses the performance of a UHDR delivery system. Establishing tolerances to unify standards and offering direction for future advancements in the evolving FLASH-RT field.

6.
Mol Ecol ; 32(5): 1020-1033, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527320

RESUMO

Clonal reproduction can provide an advantage for invasive species to establish as it can circumvent inbreeding depression which often plagues introduced populations. The world's most widespread invasive ant, Paratrechina longicornis, was previously found to display a double-clonal reproduction system, whereby both males and queens are produced clonally, resulting in separate male and queen lineages, while workers are produced sexually. Under this unusual reproduction mode, inbreeding is avoided in workers as they carry hybrid interlineage genomes. Despite the ubiquitous distribution of P. longicornis, the significance of this reproductive system for the ant's remarkable success remains unclear, as its prevalence is still unknown. Further investigation into the controversial native origin of P. longicornis is also required to reconstruct the evolutionary histories of double-clonal lineages. Here, we examine genetic variation and characterize the reproduction mode of P. longicornis populations sampled worldwide using microsatellites and mitochondrial DNA sequences to infer the ant's putative native range and the distribution of the double-clonal reproductive system. Analyses of global genetic variations indicate that the Indian subcontinent is a genetic diversity hotspot of this species, suggesting that P. longicornis probably originates from this geographical area. Our analyses revealed that both the inferred native and introduced populations exhibit double-clonal reproduction, with queens and males around the globe belonging to two separate, nonrecombining clonal lineages. By contrast, workers are highly heterozygous because they are first-generation interlineage hybrids. Overall, these data indicate a worldwide prevalence of double clonality in P. longicornis and support the prediction that the unusual genetic system may have pre-adapted this ant for global colonization by maintaining heterozygosity in the worker force and alleviating genetic bottlenecks.


Assuntos
Formigas , Animais , Masculino , Genótipo , Formigas/genética , Evolução Biológica , Heterozigoto , Reprodução/genética
7.
Phys Rev Lett ; 131(8): 083003, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37683156

RESUMO

Particlelike excitations, or quasiparticles, emerging from interacting fermionic and bosonic quantum fields underlie many intriguing quantum phenomena in high energy and condensed matter systems. Computation of the properties of these excitations is frequently intractable in the strong interaction regime. Quantum degenerate Bose-Fermi mixtures offer promising prospects to elucidate the physics of such quasiparticles. In this work, we investigate phonon propagation in an atomic Bose-Einstein condensate immersed in a degenerate Fermi gas with interspecies scattering length a_{BF} tuned by a Feshbach resonance. We observe sound mode softening with moderate attractive interactions. For even greater attraction, surprisingly, stable sound propagation reemerges and persists across the resonance. The stability of phonons with resonant interactions opens up opportunities to investigate novel Bose-Fermi liquids and fermionic pairing in the strong interaction regime.

8.
Nature ; 551(7680): 356-359, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29107941

RESUMO

Scattering is used to probe matter and its interactions in all areas of physics. In ultracold atomic gases, control over pairwise interactions enables us to investigate scattering in quantum many-body systems. Previous experiments on colliding Bose-Einstein condensates have revealed matter-wave interference, haloes of scattered atoms, four-wave mixing and correlations between counter-propagating pairs. However, a regime with strong stimulation of spontaneous collisions analogous to superradiance has proved elusive. In this regime, the collisions rapidly produce highly correlated states with macroscopic population. Here we find that runaway stimulated collisions in Bose-Einstein condensates with periodically modulated interaction strength cause the collective emission of matter-wave jets that resemble fireworks. Jets appear only above a threshold modulation amplitude and their correlations are invariant even when the number of ejected atoms grows exponentially. Hence, we show that the structures and atom occupancies of the jets stem from the quantum fluctuations of the condensate. Our findings demonstrate the conditions required for runaway stimulated collisions and reveal the quantum nature of matter-wave emission.

9.
BMC Geriatr ; 23(1): 756, 2023 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980463

RESUMO

BACKGROUND: Pain is often neglected in disabled older population, especially in Taiwan where the population of institutional residents is rapidly growing. Our study aimed to investigate pain prevalence and associated factors among institutional residents to improve pain assessment and management. METHODS: This nationwide study recruited 5,746 institutional residents in Taiwan between July 2019 and February 2020. Patient self-report was considered the most valid and reliable indicator of pain. A 5-point verbal rating scale was used to measure pain intensity, with a score ranging from 2 to 5 indicating the presence of pain. Associated factors with pain, including comorbidities, functional dependence, and quality of life, were also assessed. RESULTS: The mean age of the residents was 77.1 ± 13.4 years, with 63.1% of them aged over 75 years. Overall, 40.3% of the residents reported pain, of whom 51.2% had moderate to severe pain. Pain was more common in residents with comorbidities and significantly impacted emotions and behavior problems, and the mean EQ5D score, which is a measure of health-related quality of life (p < .001). Interestingly, pain was only related to instrumental activities of daily living (IADL) and not activities of daily living (ADL). On the other hand, dementia was significantly negatively associated with pain (p < .001), with an estimated odds of 0.63 times (95% CI: 0.53-0.75) for the presence of pain when compared to residents who did not have dementia. CONCLUSIONS: Unmanaged pain is common among institutional residents and is associated with comorbidities, IADL, emotional/behavioral problems, and health-related quality of life. Older residents may have lower odds of reporting pain due to difficulty communicating their pain, even through the use of a simple 5-point verbal rating scale. Therefore, more attention and effort should be directed towards improving pain evaluation in this vulnerable population .


Assuntos
Atividades Cotidianas , Demência , Humanos , Idoso , Idoso de 80 Anos ou mais , Atividades Cotidianas/psicologia , Estudos Transversais , Qualidade de Vida/psicologia , Dor/diagnóstico , Dor/epidemiologia , Dor/psicologia , Demência/epidemiologia , Cognição
10.
Sensors (Basel) ; 23(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37177415

RESUMO

Since printed capacitive sensors provide better sensing performance, they can be used in automotive bezel applications. It is necessary to fabricate such sensors and apply an optimization approach for choosing the optimal sensor pattern. In the present work, an effort was made to formulate interdigitated pattern-printed Silver (Ag) electrode flexible sensors and adopt the Taguchi Grey Relational (TGR)-based optimization approach to enhance the flexible sensor's panel for enhanced automobile infotainment applications. The optimization technique was performed to derive better design considerations and analyze the influence of the sensor's parameters on change in capacitance when touched and production cost. The fabricated flexible printed sensors can provide better sensing properties. A design pattern which integrates an overlap of 15 mm, an electrode line width of 0.8 mm, and an electrode gap 0.8 mm can produce a higher change in capacitance and achieve a lower weight. The overlap has a greater influence on sensor performance owing to its optimization of spatial interpolation.

11.
Annu Rev Entomol ; 67: 43-63, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34587457

RESUMO

The longlegged ant (Anoplolepis gracilipes) is one of the most damaging invasive tramp ants globally. It is generally found between latitudes 27°N and 27°S in Asia, although it has been introduced to other continents. Its native range remains debatable, but it is believed to be in Southeast Asia. Anoplolepis gracilipes invasion has many serious ecological consequences, especially for native invertebrate, vertebrate, and plant communities, altering ecosystem dynamics and functions. We examine and synthesize the literature about this species' origin and distribution, impacts on biodiversity and ecosystems, biology and ecology, chemical control, and potential biocontrol agents. We highlight emerging research needs on the origin and invasion history of this species, its reproductive mode, its relationship with myrmecophiles, and its host-microbial interactions, and we discuss future research directions.


Assuntos
Formigas , Animais , Biodiversidade , Biologia , Ecossistema , Espécies Introduzidas , Reprodução
12.
Phys Rev Lett ; 129(10): 103401, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112456

RESUMO

A mobility edge, a critical energy separating localized and extended excitations, is a key concept for understanding quantum localization. The Aubry-André (AA) model, a paradigm for exploring quantum localization, does not naturally allow mobility edges due to self-duality. Using the momentum-state lattice of quantum gas of Cs atoms to synthesize a nonlinear AA model, we provide experimental evidence for a mobility edge induced by interactions. By identifying the extended-to-localized transition of different energy eigenstates, we construct a mobility-edge phase diagram. The location of a mobility edge in the low- or high-energy region is tunable via repulsive or attractive interactions. Our observation is in good agreement with the theory and supports an interpretation of such interaction-induced mobility edge via a generalized AA model. Our Letter also offers new possibilities to engineer quantum transport and phase transitions in disordered systems.

13.
Cell Mol Neurobiol ; 42(3): 791-806, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33025417

RESUMO

The insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-ß signal pathways are both recognized as important in regulating cancer prognosis, such as the epithelial-to-mesenchymal transition (EMT) and cell invasion. However, cross-talk between these two signal pathways in glioblastoma multiforme (GBM) is still unclear. In the present study, by analyzing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GSE) 4412, GBM patients with higher IGF-1 levels exhibited poorer survival. Genes positively correlated with IGF-1 were enriched in EMT and TGF-ß signal pathways. IGF-1 treatment enhanced mesenchymal marker expressions and GBM cell invasion. A significant positive correlation was observed for IGF-1 with TGF-ß1 (TGFB1) or TGF-ß receptor 2 (TGFBR2), both of which participate in TGF-ß signaling and are risk genes in the GBM process. IGF-1 stimulation promoted both TGFB1 and TGFBR2 expressions. LY2157299, a TGF-ß signaling inhibitor, attenuated IGF-1-enhanced GBM cell invasion and mesenchymal transition. By analyzing IGF-1-regulated microRNA (miR) profiles, miR-4286 was found to be significantly downregulated in IGF-1-treated cells and could be targeted to both TGFB1 and TGFBR2. Overexpression of miR-4286 significantly attenuated expressions of the IGF-1-mediated mesenchymal markers, TGFB1 and TGFBR2. Using kinase inhibitors, only U0126 treatment showed an inhibitory effect on IGF-1-reduced miR-4286 and IGF-1-induced TGFB1/TGFBR2 expressions, suggesting that MEK/ERK signaling is involved in the IGF-1/miR-4286/TGF-ß signaling axis. Finally, our results suggested that miR-4286 might act as a tumor suppressive microRNA in inhibiting IGF-1-enhanced GBM cell invasion. In conclusion, IGF-1 is connected to TGF-ß signaling in regulating the mesenchymal transition and cell invasion of GBM through inhibition of miR-4286. Our findings provide new directions and mechanisms for exploring GBM progression.


Assuntos
Glioblastoma , MicroRNAs , Transdução de Sinais , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Glioblastoma/patologia , Humanos , Fator de Crescimento Insulin-Like I/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta/metabolismo
14.
Ecotoxicol Environ Saf ; 236: 113476, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35367880

RESUMO

Using bacteriophages (phages) as environmental sanitizers has been recognized as a potential alternative method to remove bacterial contamination in vitro; however, very few studies are available on the application of phages for infection control in hospitals. Here, we performed a 3-year prospective intervention study using aerosolized phage cocktails as biocontrol agents against carbapenem-resistant Acinetobacter baumannii (CRAB) infection in the hospital. When a CRAB-infected patient was identified in an intensive care unit (ICU), their surrounding environment was chosen for phage aerosol decontamination. Before decontamination, 501 clinical specimens from the patients were subjected to antibiotic resistance analysis and phage typing. The optimal phage cocktails were a combination of different phage families or were constructed by next-evolutionary phage typing with the highest score for the host lysis zone to prevent the development of environmental CRAB phage resistance. The phage infection percentage of the antibiotic-resistant A. baumannii strains was 97.1%, whereas the infection percentage in the antibiotic-susceptible strains was 79.3%. During the phage decontamination periods from 2017 to 2019, the percentage of carbapenem-resistant A. baumannii in test ICUs decreased significantly from 65.3% to 55%. The rate of new acquisitions of CRAB infection over the three years was 4.4 per 1000 patient-days, which was significantly lower than that in the control wards (8.9 per 1000 patient-days) where phage decontamination had never been performed. In conclusion, our results support the potential of phage cocktails to decrease CRAB infection rates, and the aerosol generation process may make this approach more comprehensive and time-saving.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Infecção Hospitalar , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/prevenção & controle , Aerossóis , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos
15.
Sensors (Basel) ; 22(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36433573

RESUMO

The objective of the proposed human-machine cooperation (HMC) workstation is to both rapidly detect calcium-based fish bones in masses of minced fish floss and visually guide operators in approaching and removing the detected fish bones by hand based on the detection of fingernails or plastic-based gloves. Because vibration is a separation mechanism that can prevent absorption or scattering in thick fish floss for UV fluorescence detection, the design of the HMC workstation included a vibration unit together with an optical box and display screens. The system was tested with commonly used fish (swordfish, salmon, tuna, and cod) representing various cooking conditions (raw meat, steam-cooked meat, and fish floss), their bones, and contaminating materials such as derived from gloves made of various types of plastic (polyvinylchloride, emulsion, and rubber) commonly used in the removal of fish bones. These aspects were each investigated using the spectrum analyzer and the optical box to obtain and analyze the fluorescence spectra and images. The filter was mounted on a charge-coupled device, and its transmission-wavelength window was based on the characteristic band for fish bones observed in the spectra. Gray-level AI algorithm was utilized to generate white marker rectangles. The vibration unit supports two mechanisms of air and downstream separation to improve the imaging screening of fish bones inside the considerable flow of fish floss. Notably, under 310 nm ultraviolet B (UVB) excitation, the fluorescence peaks of the raw fillets, steam-cooked meat, and fish floss were observed at for bands at longer wavelengths (500-600 nm), whereas those of the calcium and plastic materials occurred in shorter wavelength bands (400-500 nm). Perfect accuracy of 100% was achieved with the detection of 20 fish bones in 2 kg of fish floss, and the long test time of around 10-12 min results from the manual removal of these fish bones.


Assuntos
Cálcio , Vibração , Animais , Humanos , Fluorescência , Vapor , Peixes , Tecnologia , Plásticos
16.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216307

RESUMO

Pathogenic superbugs are the root cause of untreatable complex infections with limited or no treatment options. These infections are becoming more common as clinical antibiotics have lost their effectiveness over time. Therefore, the development of novel antibacterial agents is urgently needed to counter these microbes. Antimicrobial peptides (AMPs) are a viable treatment option due to their bactericidal potency against multiple microbial classes. AMPs are naturally selected physiological microbicidal agents that are found in all forms of organisms. In the present study, we developed two tilapia piscidin 2 (TP2)-based AMPs for antimicrobial application. Unlike the parent peptide, the redesigned peptides showed significant antimicrobial activity against multidrug-resistant bacterial species. These peptides also showed minimal cytotoxicity. In addition, they were significantly active in the presence of physiological salts, 50% human serum and elevated temperature. The designed peptides also showed synergistic activity when combined with clinical antibiotics. The current approach demonstrates a fruitful strategy for developing potential AMPs for antimicrobial application. Such AMPs have potential for progression to further trials and drug development investigations.


Assuntos
Acinetobacter baumannii , Anti-Infecciosos , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana
17.
Magn Reson Med ; 86(4): 1873-1887, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080720

RESUMO

PURPOSE: Modern methods for MR image reconstruction, denoising, and parameter mapping are becoming increasingly nonlinear, black-box, and at risk of "hallucination." These trends mean that traditional tools for judging confidence in an image (visual quality assessment, point-spread functions (PSFs), g-factor maps, etc.) are less helpful than before. This paper describes and evaluates an approach that can help with assessing confidence in images produced by arbitrary nonlinear methods. THEORY AND METHODS: We propose to characterize nonlinear methods by examining the images they produce before and after applying controlled perturbations to the measured data. This results in functions known as local perturbation responses (LPRs) that can provide useful insight into sensitivity, spatial resolution, and aliasing characteristics. LPRs can be viewed as generalizations of classical PSFs, and are are very flexible-they can be applied to arbitary nonlinear methods and arbitrary datasets across a range of different reconstruction, denoising, and parameter mapping applications. Importantly, LPRs do not require a ground truth image. RESULTS: Impulse-based and checkerboard-pattern LPRs are demonstrated in image reconstruction and denoising scenarios. We observe that these LPRs provide insights into spatial resolution, signal leakage, and aliasing that are not available with other methods. We also observe that popular reference-based image quality metrics (eg, mean-squared error and structural similarity) do not always correlate with good LPR characteristics. CONCLUSIONS: LPRs are a useful tool that can be used to characterize and assess confidence in nonlinear MR methods, and provide insights that are distinct from and complementary to existing quality assessments.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
18.
Pharmacology ; 106(11-12): 623-636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34753130

RESUMO

INTRODUCTION: 5-Fluorouracil (5-FU) is used to treat various cancers, including non-small-cell lung cancer (NSCLC). It inhibits nucleotide synthesis and induces single- and double-strand DNA breaks. In the homologous recombination pathway, radiation-sensitive 52 (Rad52) plays a crucial role in DNA repair by promoting the annealing of complementary single-stranded DNA and stimulating Rad51 recombinase activity. Erlotinib (Tarceva) is a selective epidermal growth factor receptor tyrosine kinase inhibitor with clinical activity against NSCLC cells. However, whether the combination of 5-FU and erlotinib has synergistic activity against NSCLC cells is unknown. METHODS: After the 5-FU and/or erlotinib treatment, the expressions of Rad52 mRNA were determined by quantitative real-time polymerase chain reaction analysis. Protein levels of Rad52 and phospho-p38 MAPK were determined by Western blot analysis. We used specific Rad52 or p38 MAPK small interfering RNA and p38 MAPK inhibitor (SB2023580) to examine the role of p38 MAPK-Rad52 signal in regulating the chemosensitivity of 5-FU and/or erlotinib. Cell viability was assessed by MTS assay and trypan blue exclusion assay. RESULTS: In 2 squamous cell carcinoma cell lines, namely, H520 and H1703, 5-FU reduced Rad52 expression in a p38 MAPK inactivation-dependent manner. Enhancement of p38 MAPK activity by transfection with MKK6E (a constitutively active form of MKK6) vector increased the Rad52 protein level and cell survival by 5-FU. However, in human lung bronchioloalveolar cell adenocarcinoma A549 cells, 5-FU reduced Rad52 expression and induced cytotoxicity independent of p38 MAPK. Moreover, 5-FU synergistically enhanced the cytotoxicity and cell growth inhibition of erlotinib in NSCLC cells; these effects were associated with Rad52 downregulation and p38 MAPK inactivation in H520 and H1703 cells. CONCLUSION: The results provide a rationale for combining 5-FU and erlotinib in lung cancer treatment.


Assuntos
Antineoplásicos/farmacologia , Cloridrato de Erlotinib/farmacologia , Fluoruracila/farmacologia , Neoplasias Pulmonares/patologia , Neoplasias de Células Escamosas/patologia , Proteína Rad52 de Recombinação e Reparo de DNA/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos
19.
J Invertebr Pathol ; 186: 107687, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34728219

RESUMO

Recent outbreaks of sacbrood virus (SBV) have caused serious epizootic disease in Apis cerana populations across Asia including Taiwan. Earlier phylogenetic analyses showed that cross-infection of AcSBV and AmSBV in both A. cerana and A. mellifera seems common, raising a concern of cross-infection intensifying the risk of disease resurgence in A. cerana. In this study, we analyzed the dynamics of cross-infection in three different types of apiaries (A. mellifera-only, A. cerana-only and two species co-cultured apiaries) over one year in Taiwan. Using novel, genotype-specific primer sets, we showed that SBV infection status varies across apiaries: AmSBV-AM and AcSBV-AC were the major genotype in the A. mellifera-only and the A. cerana-only apiaries, respectively, while AmSBV-AC and AcSBV-AC were the dominant genotypes in the co-cultured apiaries. Interestingly, co-cultured apiaries were among the only apiary type that harbored all variants and dual infections (i.e., AC and AM genotype co-infection in a single sample), indicating the interactions between hosts may form a conduit for cross-infection. The cross-infection between the two honey bee species appears to occur in a regular cycle with temporal fluctuation of AmSBV-AC and AcSBV-AC prevalence synchronized to each other in the co-cultured apiaries. Artificial infection of AcSBV in A. mellifera workers showed the suppression of viral replication, suggesting the potential of A. mellifera serving as a AcSBV reservoir that may contribute to virus spillover. Furthermore, the survival rate of A. cerana larvae was significantly reduced after artificial infections of both SBVs, indicating fitness costs of cross-infection on A. cerana and thus a high risk of disease resurgence in co-cultured apiaries. Our field and laboratory data provide baseline information that facilitates understanding of the risk of SBV cross-infection, and highlights the urgent need of SBV monitoring in co-cultured apiaries.


Assuntos
Criação de Abelhas , Abelhas/virologia , Vírus de RNA/fisiologia , Animais , Evolução Molecular , Medição de Risco , Especificidade da Espécie , Taiwan
20.
Entropy (Basel) ; 23(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34573777

RESUMO

In this article, a novel adaptive fixed-time neural network tracking control scheme for nonlinear interconnected systems is proposed. An adaptive backstepping technique is used to address unknown system uncertainties in the fixed-time settings. Neural networks are used to identify the unknown uncertainties. The study shows that, under the proposed control scheme, each state in the system can converge into small regions near zero with fixed-time convergence time via Lyapunov stability analysis. Finally, the simulation example is presented to demonstrate the effectiveness of the proposed approach. A step-by-step procedure for engineers in industry process applications is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA