Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613355

RESUMO

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Cofator PQQ/farmacologia , Transição Epitelial-Mesenquimal , Células Epiteliais Alveolares , Material Particulado/toxicidade
2.
Toxicol Appl Pharmacol ; 487: 116949, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688425

RESUMO

Pulmonary fibrosis is a lung disorder characterized by the accumulation of abnormal extracellular matrix, scar tissue formation, and tissue stiffness. Type II alveolar epithelial cells (AEII) play a critical role in repairing lung tissue after injury, and repeated injury to these cells is a key factor in the development of pulmonary fibrosis. Chronic exposure to PM2.5, a type of air pollution, has been shown to increase the incidence and severity of pulmonary fibrosis by enhancing the activation of EMT in lung epithelial cells. Melatonin, a hormone with antioxidant properties, has been shown to prevent EMT and reduce fibrosis in previous studies. However, the mechanism through which melatonin targets EMT to prevent pulmonary fibrosis caused by PM2.5 exposure has not been extensively discussed before. In this current study, we found that melatonin effectively prevented pulmonary fibrosis caused by prolonged exposure to PM2.5 by targeting EMT. The study demonstrated changes in cellular morphology and expression of EMT markers. Furthermore, the cell migratory potential induced by prolonged exposure to PM2.5 was greatly reduced by melatonin treatment. Finally, in vivo animal studies showed reduced EMT markers and improved pulmonary function. These findings suggest that melatonin has potential clinical use for the prevention of pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Melatonina , Material Particulado , Fibrose Pulmonar , Melatonina/farmacologia , Melatonina/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Animais , Fibrose Pulmonar/prevenção & controle , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Material Particulado/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento Celular/efeitos dos fármacos , Humanos , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico
3.
Clin Sci (Lond) ; 133(5): 709-722, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30808718

RESUMO

The epithelial-mesenchymal transition (EMT) phenotype, whereby mature epithelial cells undergo phenotype transition and differentiate into motile, invasive cells, has been indicated in tumor metastasis. The melatonin hormone secreted by the pineal gland has an antioxidant effect and protects cells against carcinogenic substances that reduce tumor progression. However, the effects of melatonin in EMT and lung cancer metastasis are largely unknown. We found that melatonin down-regulated EMT by inhibiting Twist/Twist1 (twist family bHLH transcription factor 1) expression. This effect was mediated by MT1 receptor, PLC, p38/ERK and ß-catenin signaling cascades. Twist expression was positively correlated with tumor stage and negatively correlated with MT1 expression in lung cancer specimens. Furthermore, melatonin inhibited EMT marker expression and lung cancer metastasis to liver in vivo Finally, melatonin shows promise in the treatment of lung cancer metastasis and deserves further study.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias Hepáticas/prevenção & controle , Neoplasias Pulmonares/tratamento farmacológico , Melatonina/farmacologia , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Células A549 , Animais , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos SCID , Invasividade Neoplásica , Proteínas Nucleares/genética , Fosforilação , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Transdução de Sinais , Proteína 1 Relacionada a Twist/genética , Fosfolipases Tipo C/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , beta Catenina/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Environ Toxicol ; 34(2): 203-209, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30421542

RESUMO

Lung cancer is one of the most common cancer in cancer-related deaths worldwide, which is characterized by its strong metastatic potential. The melatonin hormone secreted by the pineal grand has an antioxidant effect and protects cells against carcinogenic substances. However, the effects of melatonin in lung cancer stemness are largely unknown. We found that melatonin reduces CD133 expression by ~50% in lung cancer cell lines, while results of a sphere formation assay showed that melatonin inhibits lung cancer stemness. These effects of melatonin were reversed when the cell lines were incubated with phospholipase C (PLC), ERK/p38, and a ß-catenin activator. Transfection with Twist siRNA augmented the inhibitory effects of melatonin, indicating that melatonin suppresses lung cancer stemness by inhibiting the PLC, ERK/p38, ß-catenin, and Twist signaling pathways. We also found CD133 expression is positively correlated with Twist expression in lung cancer specimens. Melatonin shows promise in the treatment of lung cancer stemness and deserves further study.


Assuntos
Neoplasias Pulmonares/patologia , Melatonina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células A549 , Antígeno AC133/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição Twist/antagonistas & inibidores , Fosfolipases Tipo C/antagonistas & inibidores , beta Catenina/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA