Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EFSA J ; 19(3): e06422, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33732388

RESUMO

EFSA was asked by the European Commission to provide information on levels of lipophilic shellfish toxins in whole scallops that would ensure levels in edible parts below the regulatory limits after shucking, i.e. removal of non-edible parts. This should include the okadaic acid (OA), the azaspiracid (AZA) and the yessotoxin (YTX) groups, and five species of scallops. In addition, EFSA was asked to recommend the number of scallops in an analytical sample. To address these questions, EFSA received suitable data on the three toxin groups in two scallop species, Aequipecten opercularis and Pecten maximus, i.e. data on individual and pooled samples of edible and non-edible parts from contamination incidents. The majority of the concentration levels were below limit of quantification (LOQ)/limit of detection (LOD), especially in adductor muscle but also in gonads. Shucking in most cases resulted in a strong decrease in the toxin levels. For Pecten maximus, statistical analysis showed that levels in whole scallops should not exceed 256 µg OA eq/kg or 217 µg AZA1 eq/kg to ensure that levels in gonads are below the regulatory limits of 160 µg OA or AZA1 eq/kg with 99% certainty. Such an analysis was not possible for yessotoxins or any toxin in Aequipecten opercularis and an assessment could only be based on upper bound levels. To ensure a 95% correct prediction on whether the level in scallops in an area or lot is correctly predicted to be compliant/non-compliant, it was shown that 10 scallops per sample would be sufficient to predict with 95% certainty if levels of OA-group toxins in the area/lot were 25% below or above the regulatory limit. However, to predict with a 95% certainty for levels between 140 and 180 µg OA eq/kg, a pooled sample of more than 30 scallops would have to be tested.

2.
EFSA J ; 19(8): e06809, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34434288

RESUMO

EFSA was asked by the European Commission to provide information on the levels of domoic acid (DA) in whole scallops that would ensure that levels in edible parts are below the regulatory limit after shucking. This should include five species of scallops. In addition, EFSA was asked to recommend the number of scallops to be used in an analytical sample. To address these questions, EFSA received suitable data on DA for only one scallop species, Pecten maximus, i.e. data on pooled samples of edible and non-edible parts. A large part of the concentration levels was above the limit of quantification (LOQ) and only these data were used for the assessment. Shucking in most cases resulted in a strong decrease in the toxin levels. Statistical analysis of the data showed that levels in whole scallops should not exceed 24 mg DA/kg, 59 mg DA/kg and 127 mg DA/kg to ensure that levels in, respectively, gonads, muscle and muscle plus gonads are below the regulatory limit of 20 mg DA/kg with 99% certainty. Such an analysis was not possible for the other scallop species. In the absence of data from member states, published data of variations between scallops were used to calculate the sample size to ensure a 95% correct prediction on whether the level in scallops in an area or lot is correctly predicted to be compliant/non-compliant. It was shown that 10 scallops per sample would be sufficient to predict with 95% certainty if DA levels in the area/lot were twofold below or above the regulatory limit for the highest reported coefficient of variance (CV) of 1.06. To predict with 95% certainty for levels between 15 and 27 mg DA/kg, a pooled sample of more than 30 scallops would have to be tested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA